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This book aims to assist teachers presenting the basics of quantum physics in high school and 

offers a modular curriculum. The scope of the proposed material is aimed at about 60 hours, but 

it is structured in a way that allows instruction in a flexible number of hours, from a two-hour 

general lecture, to full instruction of all the content. This book is a teacher's guide. Therefore, the 

language of reference is to the teacher, and the recommendations are from the experience we 

gained in running the program for several years in high schools in the Physics 5 units major. 

Quantitative familiarity with this content in waves is required, although the program presented 

here does not give up solving quantitative problems. Also the mathematical level required is in 

tune with high-school knowledge (in particular, no knowledge of complex numbers is required). 

In places where the marking appears  This means that there is activity in the raspberry, and a 

brief description of the task will appear.  

Epistemological introduction 
The innovation in this curriculum, beyond the content, is in the organization of knowledge. We 

take an approach of disciplinary-cultural teaching developed by Prof. Yigal Galili and Dr. Michael 

Zeitlin of the Hebrew University. This approach organizes knowledge in every physical theory 

according to three areas: nucleus, body and periphery. The nucleus includes the basic principles, 

the body includes all applications and examples , while the periphery is everything that confronts 

the theory, such as cases that are not within the jurisdiction of the theory, misunderstandings and 

the like. 

 

Students should be introduced to this approach. A good example of this is in mechanics: 

nucleus: Newton's laws. 

body: All calculations resulting from Newton's laws, momentum, Energy circular motion and 

more. 

periphery: Aristotle's conception (force creates speed and does not change it), deviations at high 

speeds (effects of relativity) and more. 

It is worth emphasizing that since quantum physics is very unintuitive, and it undermines our 

simple perceptions, we will present things during the teaching in peripheral-nuclear-body order. 

We will first present what makes sense to us (classical understanding, which is the periphery of 

quantum physics), then we will present the basic principles of quantum physics, and how they 

confront our previous understandings, and finally we will come to applications. 

    1 2 
3 

Disciplinary structure-Cultural of Basic 

Theory in Physics: 

1. nucleus, The core of the theory 
2. The body of knowledge of the theory 
3. Periphery of the theory 
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Chapter 1 - Historical Background 
Most of the topics in this chapter exist in the regular curriculum, so we will not expand on them 

here. It is worth emphasizing that all the phenomena and conclusions in this chapter are on the 

periphery of classical physics, as they cannot be explained in a plausible classical way (which 

ultimately led to the development of quantum physics). On the other hand, these topics are also 

on the periphery of quantum physics, since the explanations for 

them do not yet contain quantum understanding. 

light - wave or particle? 
In the 17th century, two major theories were formulated that 

attempted to describe light. Newton claimed that light is made 

up of particles, while Huygens argued that these are waves. 

About a hundred years later it was decided that the truth is with 

Huygens' method: that light is a wave. Phenomena such as 

interference and diffraction have proven this. 

At the end of the 19th century physicists felt that they understood almost all physics. In 1900 the 

British physicist Lord Calvin declared that "the sky of physics is brighter than ever, except for two 

light clouds obscuring the brightness of the sky." One of those clouds was the inability of physicists 

to predict thermal radiation (black body radiation). This is radiation emitted by a heated body (for 

example, bleached iron), where the frequency of the radiation is related to the temperature, and 

not to the properties of the material. The theory held by the world of science failed to predict the 

actual results: while the long wavelengths had some degree of agreement with the theory, the 

measurements at short wavelengths did not match the theory, and this dramatic discrepancy was 

therefore dubbed the "ultraviolet catastrophe." 

Physicist Max Planck gave an innovative explanation, which was an opening to a new world of 

physics that was not available to us until then. He explained that the energy of light comes in 

discrete, quantized rations. Given a particular frequency 𝑓 of the light, the smallest amount of 

energy that can arrive (“a photon”) is 𝐸 = ℎ𝑓   . The constant ℎ  is a fixed value called  "Planck’s 

constant". This explanation restored the particle understanding of light. This claim, which says 

that light comes in packets is called the quantization of light.ℎ = 6.626 ⋅ 10−34𝐽 ⋅ 𝑠 

In addition, in the late 19th century the photoelectric effect was discovered, in which the 

illumination of metal with light caused the emission of electrons. Some experimental facts were 

observed: 

i. The intensity of illumination affected the amount of electrons emitted, not their 

speed. 

ii. The frequency of illumination affects the speed of the electrons emitted, but not their 

number. 

iii. There is a threshold frequency below which there is no emission. 

iv. The emission is immediate. 

Einstein explained this (using Planck's hypothesis) according to the particle principle, according to 

which light is composed of particles - photons, whose energy depends on their frequency, so when 

there is a higher frequency there is more energy in each photon-electron collision, so the electron 
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has more speed. The more power there is, ie, more photons, then more electrons will be emitted. 

For this Einstein won the Nobel Prize in 1921 (the only one he won). 

It should be noted that this understanding was considered a direct proof of the quantization of 

light, and so it has been discussed historically. However, as we understand it today, this is not 

unequivocal proof, and the phenomenon can also be explained in another way.1 

In addition, in the Compton effect it is seen that in a collision between a photon and an electron 

it is observed that the photon has momentum. It should be noted that even at the classical level 

of Maxwell’s equations there is momentum for radiation. The phenomena described by Huygens 

and the photoelectric effect and the Compton effect indicate that light is dual - both wavy and 

particle-like. 

Chapter 2 - The Basic Principles of Quantum Physics 
As mentioned, Planck's explanation of black body radiation, Einstein's explanation of the 

photoelectric effect and the Compton effect led to the understanding that light can be not only a 

wave but also a particle. A more correct formulation is to say that light has wavy properties (which 

are manifested in phenomena such as interference and diffraction), but in addition it has particle 

properties that are manifested in other cases. The relationship  𝑝 =
ℎ

𝜆
  (connecting the 

momentum 𝑝 and the wavelength 𝜆) gives the relationship between the particle properties 

(momentum) and those of the waves (wavelength). This feature is called the duality of light, and 

is sometimes called the de Broglie principle. 

Louis de Broglie, a young French duke, hypothesized that if light is not only a 

wave but also a particle, it is likely that matter is not only a particle but also a 

wave. The hypothesis was based solely on an attempt to see nature as 

symmetrical and beautiful. He submitted this hypothesis as a doctoral 

dissertation in 1923. The hypothesis was met with doubt, but Einstein was 

enthusiastic about it, which earned de Bruyes a doctorate, and later a Nobel 

Prize (the first given for a doctoral dissertation). 

Just as the connection given between the particle properties of light and those 

of the waves, here too de Bruyes gave the same quantitative connection 

between the properties: 

𝜆 =
ℎ

𝑝
 

Raspberry Activity: Developing the Photon Motion Equation Step by Step. 

A few years later it was discovered that particles, such as electrons, do have wavy properties, and 

they perform interference and deflection like waves. We will expand on this later. 

 
1Lamb, WE (1995). Anti-photon. Applied physics B, 60 (2-3), 77-84 
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Treating a particle or body as a wave seems strange to us. Billiard balls are not waves, nor are we 

waves. How can we say we have a wavelength? What does that wavelength mean? We will try to 

understand a little more through the exercise before us:  

exercise 

I. Calculate the wavelengths of the following bodies: 

1. A guy with a mass of 60 kg running at a speed of 4 meters per second. 

2. An electron moves in a circular motion around a proton, within a radius of 0.52Å =

5.2 ⋅ 10−11𝑚 . 

Instruction to Section 2: Calculate the electric force and compare it to the radial force of 

the circular motion. 

II. Try to understand the meaning of wavelength in each case: is it noticeable? A very 

small wavelength is not felt in everyday life and therefore it is a feature that we 

cannot normally encounter. For example, the wavelength of light is very small for us, 

so we do not feel it as a wave usually. This is why it took centuries to be convinced 

that light is indeed a wave. In contrast, a wave of water or a wave in a string come in 

wavelengths of a noticeable magnitude for us. So we want to ask is the wavelength 

of the guy significant for him? Is the wavelength of the electron "significant" for its 

dynamics? 

Case Solution 1:  𝜆 =
ℎ

𝑝
=

ℎ

𝑚𝑣
=

6.626⋅10−34

60⋅4
= 2.76 ⋅ 10−36𝑚 

Case Solution 2:  
𝑚𝑣2

𝑟
=

𝑘𝑒2

𝑟2   ⇒   𝑣 = √
𝑘

𝑟𝑚
⋅ 𝑒  ⇒   𝜆 =

ℎ

𝑝
=

ℎ

𝑚𝑣
= √

𝑟

𝑚𝑘
⋅

ℎ

𝑒
= 3.29Å ≅ 2𝜋𝑟 

The calculation shows that the wavelength is not noticeable for the guy, which means that 

quantum physics is not something we encounter in bodies with a macroscopic order of 

magnitude. On the other hand, for the electron it turns out that the wavelength is equal to the 

circumference of the circle on which it moves 2𝜋𝑟, i.e. a magnitude that is "significant" on the 

scale on which the electron moves. 

This observation of the particle as a wave, or as having wavy properties, is the gateway to 

quantum physics. Hence, we would like to understand the meaning of those waves. 

If we look at a wave of matter, such as a water wave, it seems that 

the wave means that the matter is not concentrated at one point 

as a particle, but is scattered over an entire region. The function 

that describes the height of the wave everywhere - called the wave 

function, actually describes the distribution of matter, how much of the matter is at each and 

every point. When we claim that each particle is in fact also a wave, we are ostensibly claiming 

that it is not at a particular point, but is "smeared" in a particular area, and in fact is not a point 

particle but a cloud of matter extending in different regions at different densities, described by 

the wave function. In fact, this is how they understood the meaning of the waves in the early 

stages of the development of quantum theory. 
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However, there is a problem with this understanding. If we take an electron as an example, in 

every measurement we measure the place of the electron we find the whole electron in one place 

as a point particle. We do not find a part of the electron as we would expect if the electron were 

a cloud of matter spread in a particular region. 

The perceptual transition from classical matter waves to quantum matter waves is the transition 

from the distribution of matter to the distribution of probability. Unlike a classical material wave, 

such as a water wave, whose wave function means the distribution of matter, the quantum wave 

function means the distribution of probability. The meaning of a quantum wave is probabilistic, 

that is, different probabilities are given to situations that are classically contradictory. If the 

classical wave of matter "allows" matter to be in several places, in different quantities, the 

quantum wave of matter allows the individual particle to be in several places or in several states 

with different probabilities. This is the quantum wave. 

The wavefunction does not describe where there is more of the particle and where there is less, 

but rather it describes the probability of finding the particle at each and every point. The particle 

is a point particle, and if we measure its place it is found that it (the whole) is at a certain point, 

but that it has different probabilities of being in different places. If the wave function of the 

material wave describes the distribution of matter, then the quantum wave function describes 

the distribution of the probability of finding the particle everywhere. 

The significance of the probability is expressed as soon as a measurement is made. If we measure 

the position of the particle, we can get as a result (correct!) any of the places where the wave 

function exists (and does not go to zero). The wave function (actually, the 

square of the wave function) gives the probability of getting one position or 

another in the measurement. 

Einstein objected to this understanding, arguing that "God does not play 

dice." He disagreed with an approach that describes nature and science in a 

way that is purely probabilistic. To this Niels Bohr replied that he should not 

tell God how to act. Today experiments and evidence often show that Einstein 

was wrong in this regard. 

We will now expand a little on the meaning of this. In terms of classical physics, and this is how 

we intuitively understand reality, a physical quantity related to a particular particle or system has 

a single value. A classical particle has a certain location, a certain momentum, a certain energy 

and more. In the transition to quantum physics we understand that the particle is a wave. What 

is the meaning of the phrase "the particle is a wave"? If we previously defined the waves as the 

ability of the particle to be in different places at different probabilities, we can now say this about 

any feature or condition that characterizes the particle, and not just about the location feature. A 

particle can have several motions at once (or energy or any other physical quantity), where each 

value and value of the momentum has a certain probability / from now on, the waves will not 

necessarily look like a wave we are used to seeing (water wave, sinusoidal electromagnetic wave, 

etc.). In space. The perception of the waves is the understanding that the particle is not only local 

with defined properties, but is in a superposition that contains several possible values 

simultaneously. Although, Sometimes we can see that the quantum waves are manifested in 

classic wave phenomena, such as interference and diffraction. Thus it appears that the electron 

 

Einstein And Bohr 
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which is a particle will present wavy phenomena as interference and diffraction. Moreover, it 

turns out that the phenomena can also be described as having two parts of the same entity, and 

these two parts are always adjacent: one part is the particle and one part is the attached wave 

(associated) to a particle for any physical size that characterizes the particle (momentum, 

position, spin, etc.). These two parts propagate in space at a different speed, so that the particle 

moves at finite speed, while the attached wave propagates immediately at infinite speed2. This 

phenomenon is called the "non-locality" of the wave function - the wave function is not local, it 

has no position from which it propagates at a limited speed (for example, the speed of light), but 

the propagation is immediate throughout space. It is important to emphasize that when we say 

that a particle is simultaneously in several different states (classically contradictory to each other), 

so that each state has a different probability, we do not mean that the state of the particle is 

unknown, and there are different probabilities of finding out its true state. The exact state of the 

particle is known to us absolutely, and it consists of different states in different probabilities. In 

such a case we say that the state of the particle consists of a superposition (in Hebrew: 

composition) of different states.  

What happens at the moment of measurement? Once we have measured the physical magnitude 

and obtained a certain value, which is one of the multitude of values that made up the situation, 

henceforth this value is the only one that exists. We describe this with the words "the wave 

function collapses and becomes an eigen(self)-state with the same specific value" found in the 

measurement. If we now make additional measurements, we will all get the same value we got 

in the first measurement. All other values that were possible, and together built the wave 

function, disappeared when the state “collapsed” to the particular value observed in the first 

measurement. 

Raspberry Activity: A comparison between classical physics and quantum physics 

Some readers may think: It's simple. There was always a certain value, but until the measurement 

we did not know what that value was, so we talked about a lot of possible values. The 

measurement did not change anything, but only told us what the same value is, and indeed this 

value that was the only one all the time, will continue to be the only true value even now. 

However, this is not a correct description of the physical reality, as we will prove later with the 

help of experiments performed. Before the measurement, not only did we not know what the 

true value was, but there really was no single true value. The state of the particle was a collection 

of different states, it was the true state of the particle, and now its state has changed and become 

a single-valued state. 

Raspberry activity: Understanding the material waves - video-based activity. Students 

watch two short videos and answer questions about the material waves. 

 

 
2Einstein opposed this view, since it contradicts the principle that nothing can pass faster than the speed 

of light. At the same time, we now understand that indeed the wave function spreads throughout space 
immediately without limitation of the speed of light. Still, there is no material contradiction to the theory 
of relativity since information cannot be transmitted at a speed greater than the speed of light by this. 
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Summary so far 
In contrast to classical physics in which an electron and the like is a particle, in quantum physics 

the particle is also a wave. The electron has particle properties and wavy properties. 

In contrast to classical physics in which a wave of matter represents the amount of matter, here 

the wave (or wave function) represents the probabilities of obtaining different results in 

measurement. 

In contrast to classical physics in which measurement gives us information that was not known to 

us but existed, in quantum physics measurement actually determines the state, and changes it 

from a state of superposition, to a single state. 

In the epistemological context we mentioned in the opening, the features we mentioned here 

regarding classical physics belong to the periphery, whereas in quantum physics - this is the 

nucleus. In the body are the applications and examples. 

As an important example it is recommended to watch the video "Dr. Quantum And the 

experiment of the two slits"On interference with waves and electrons. It is worth stopping 

during the film and discussing with the students different points. 

https://www.youtube.com/watch?v=yS3DXQ9jY04 

 Raspberry Activity: Watch the video "Dr. Quantum and the Experiment of the Two Slits" And 

answering questions during the video.  

In the quantum case there is a collapse of the wave function at the moment of measurement. The 

measurement can take place in two places: 

A. On the screen, then the electron hits one possible position, and when shooting many electrons 

see an interference pattern. 

B. If the women put a measuring instrument in one of the cracks. In this case, we do not see an 

interference pattern. 

Many students have already encountered the video before learning the subject, but it is usually 

difficult for them at first to connect the phenomena in the video with what we have just learned. 

It is worth letting them predict what will happen at each stage, and explain this in light of the basic 

principles of quantum physics. 

When we put a detector in one of the cracks the wave function collapsed so we did not see any 

interference. This illustrates what we have said that the measurement changes the wave function 

and causes the superposition to collapse, rather than just providing information about the 

situation. If it provided information only, there should have been no difference between the 

presence of the detector in the crack and its absence. 

Let us pay attention here to the phenomenon of non-locality. While the electron is moving at 

some finite speed, its waves, or its wave function propagates in space immediately without 

limitation of velocity. This is how the electron "knows" if there is a detector in the second slot, 

https://www.youtube.com/watch?v=yS3DXQ9jY04
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and this is how interference occurs even though the different orbiting paths are not of the same 

length. 

The quantum state 
A physical state is actually a description of the value of a particular physical quantity or of a 

number of physical quantities. In classical physics, the position of a particle and its velocity (or 

alternatively its position and momentum) are often discussed in order to describe its state.3. The 

uniqueness of the quantum state is that it can consist of a superposition of different “classical-

like” states. 

A quantum state with a single value of some physical magnitude is called a eigen-state of the same 

magnitude, as opposed to a non-eigen-state called a superposition state.  

Worth emphasizing: A particle or body cannot be at a given moment in two different places (or 

with two different energies or two different motives). This is not possible in either classical or 

quantum physics. The state of superposition does not express being in two places (or more), but 

probabilities of being in two places. Again we will not mean that we do not know where and there 

is one chance or another that the particle is in a certain place, but the state itself is a state of 

superposition containing different states in different probabilities. Supposedly, nature itself does 

not know. 

In classical physics there are situations, especially in multi-particle systems such as a container full 

of lots of gas molecules, in which we describe certain sizes statistically, since we do not know the 

velocity of each particle and particle. In quantum physics (meanwhile we are talking only about 

one particle), when we talk about probabilities we do not mean lack of knowledge, but about 

knowing a state that is not of single value but a state that is a superposition of different states in 

different probabilities. 

The misconception that because of the probabilistic nature the result of the experiment is not 

accurate is also worth emphasizing: the probabilistic nature does not harm the accuracy of the 

experiment - the distribution of the probability can be predicted with very high accuracy. Accuracy 

is in determining the probability of getting a certain value in a certain measurement, and this 

probability quantum physics knows how to calculate with very high accuracy and in very good 

agreement with the measurements. 

It is worth emphasizing to students these differences on all sorts of occasions, in order to reduce 

the chance of misunderstanding. 

 
3 Later it seems that in quantum physics it is not possible to talk about position and momentum 
at the same time, but at the moment it is not relevant. 
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Heisenberg's uncertainty principle 
In 1927, the German physicist Werner Heisenberg discovered the uncertainty principle. 

The principle states that we can never know with absolute accuracy at the same time 

the position of a particle and its momentum. The wording of the law is4: 

𝛥𝑥 ⋅ 𝛥𝑝 ≥
ℎ

4𝜋
=

ℏ

2
 

Here we express our error or inaccuracy in knowing the position or momentum 𝛥𝑥, 𝛥𝑝. 

The more accurately we know one of these two sizes, the greater our minimal error in 

knowing the other size. It should be emphasized that this is not a lack of knowledge or 

a technical limitation related to the production capacity of good measuring 

instruments. This is a fundamental inability related to the nature of states in quantum physics. 

A popular explanation for the uncertainty principle is called the "Heisenberg microscope" and it 

explains the principle as follows: in order to know the position of the particle we need to see it, 

for example by a photon. However, when the photon hits the particle it will give it momentum, 

so we can not know what its momentum is. The more accurately we want to know the position, 

we will need a photon with a smaller wavelength (wavelength is actually the scale of accuracy in 

position), but then the photon will have a greater momentum, and our uncertainty about the 

momentum of the particle will be greater anyway. This explanation is problematic and therefore 

it is recommended not to bring it to the students. It reinforces the understanding of the 

uncertainty principle as a technical difficulty in knowing the position and momentum at the same 

time. It links the uncertainty to our knowing, rather than to something essential in the properties 

of the particle. This explanation is a misconception, and is part of the periphery of quantum 

physics. 

In fact, some argue that the name "uncertainty principle"  is a distorted translation from German, 

and it is a misleading concept, which gives the wrong feeling as if only for us it is not certain, while 

it is a fundamental inability to define such accuracy. A concept that can replace "uncertainty" is 

indeterminacy - that is, the inability to determine. 

Another wording of the law says that we can never know with absolute accuracy the momentum 

and position, i.e. there can be no state that is both an eigen-state of position and an eigen-state 

of momentum. If a state is a eigen-state of position, it is certainly a state of superposition of many 

momentum values, and vice versa, if it is a state with a definite momentum - eigen-state of 

momentum, then it must consist of different position states. There can of course be a state that 

is not an eigen-state neither of the momentum nor of the position. 

We can describe a state as a superposition of position states. In this case it is said that we describe 

according to the basis of location. Alternatively it can be described by the momentum of 

momentum. Eigen-states of momentum will always be described as a superposition when the 

description is in the base of the position, and vice versa. We will return to this description later. 

 
4 We used here the reduced Planck constant: called: ℏ =

ℎ

2𝜋
 𝑐𝑎𝑙𝑙𝑒𝑑 h-bar. 

 



12 
 

 

 

 

Demonstration of the uncertainty principle through simulation 
We would now like to illustrate the principle of uncertainty.  

It will be recalled that according to de Broglie waves there 

is a relationship between momentum and wavelength. 

When we mean wavelength it means the length of a period 

of sine wave or cosine function. If the periodicity is not 

sinusoidal, including infinite (i.e., there is no periodicity), we 

can break it down into sinuses and cosines by means of 

Fourier decomposition. An eigen-state of momentum is 

actually a state with a single momentum, and in any case a 

state with a single wavelength - sine or cosine or a certain 

combination of both.To be more precise, a sine-only or 

cosine-only wave is a super-position wave of two 

momentum identical in size and inverted in their direction 

𝑒𝑖𝑘𝑥 (i.e., still of the same size, and thus, in no way 

contradictory to de-Broglie waves). A single momentum 

wave is one of a kind, but we do not want to deal with 

complex numbers here at all. Therefore we will talk about a 

sine wave or cosine and it is said that it has a single size of 

momentum, as it appears in the de Broglie formula. It is 

clear that in this case a particular location has no meaning, 

but the wave is in any location.5 

A defined location seems to require an infinite multiplicity of motions (wavelengths). It is 

recommended to use the class in the simulation at the 

link:https://phet.colorado.edu/en/simulation/fourier 

The simulation shows us a superposition of several waves. In the upper rectangle the amplitude 

of waves of different wavelengths can be determined. In the middle rectangle all the waves are 

depicted in different colors. The lower rectangle depicts the 

interference of all waves. In the lower rectangle, the axis X is a 

position axis. If the interference of the waves is of high value, it 

means that the probability of finding a particle in this place is 

high. 

For the purpose of demonstration, it is advisable to work with 

cosine waves. We want to show that in order to create a defined 

 
5 Again, there is a difference here between the wave that is commonly spoken of, which has a constant 

probability in space, and a wave of sine or cosine that has reset points.𝑒𝑖𝑘𝑥 

https://phet.colorado.edu/en/simulation/fourier
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location we will need an infinity cosine wave superposed. You should lower the graph (at the 

bottom) so that we can see the number of wavelengths on the interference screen. In the first 

stage, one wave appears, with the largest wavelength. 

In the second stage, in the upper rectangle an amplitude (more or less uniform, or gradually 

smaller) should be given to each of the waves. With each addition, we see that the interference 

between the waves resets almost the entire area between the large peaks. It can be noted to 

students who have learned this, that it is a phenomenon that is 

somewhat reminiscent of diffraction from lattice, where multiple  

peaks appear with destructive interference between them. 

The distance from one peak to another is equal to the length of 

the largest wave.  

Remember that each such wave represents a certain momentum. 

The smaller the wavelengths (large momentum!), The more 

concentrated the peaks will be: 

The conclusion from this demonstration is that we need an 

infinite number of wave in order for the combined wave function to be constructed of very sharp 

peaks when the wave function is zero between them. 

However, there is still no definite location here, but a set of an infinity points, at fixed distances 

between them, where only the particle can be found. How can we reach a single, defined location? 

In this simulation, we started with using a certain wavelength, and added smaller and smaller 

wavelengths. The distance we obtained between the points where there is a high probability of 

finding the particle was the first wavelength (large, small-momentum). In the simulation we are 

limited, but if we were to start the process from a larger wavelength (small momentum!) The 

distance between the resulting peaks would be greater. In order to reach one and only one very 

concentrated peak, around which everything (almost)6 goes to zero, all wavelengths are needed, 

from very large (small momentum) to very small (large momentum). This is in fact an illustration 

of the principle of uncertainty, which shows that in order to be in a definite place, the 

superposition of many waves is needed. 

 
6If there are indeed infinite wavelengths, then the wave function will be zero between peak and peak. If 

there are many wavelengths but in a finite number, then it will be nearly zero, but in practice we can 
treat it as zero. 
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The reason why the explanation "Heisenberg's microscope" 

described above is quite common (for example, in Hawking’s 

book7), Is because it provides an intuitive explanation for 

understanding the principle of uncertainty. This is an 

epistemological explanation, an explanation that says we have 

a "technical" problem that we cannot know the two sizes 

simultaneously. The explanation presented through the 

simulation is an ontological explanation, that is, refers to the 

physical reality, how nature actually behaves. This explanation 

makes it clear that the uncertainty principle stems from the 

material waves: since the particle has wavy properties, and the 

wave property is immanent to physical quantities like 

momentum and position, to get a certain position it takes 

interference of lots of momenta and to get a certain 

momentum it needs interference of many positions. In fact, as 

we have said, there are other pairs of physical quantities 

between which there is uncertainty ("non-commuting operators"), and this is not necessarily 

related to location and momentum. For other quantities the explanations given, both the 

Heisenberg microscope, and the description we presented using the Fourier series, are irrelevant, 

but as stated, this uncertainty principle can be proved mathematically for all such pairs of 

quantities. 

Applications of the uncertainty principle 
We will present here two examples of applications of the uncertainty principle. As part of 

the division into the nucleus, body and periphery of the knowledge of quantum physics, 

these applications belong to the body. 

 

1. The absolute zero of motion in a liquid/solid cannot be reached when cooling a system. 

When a material cools, the material shrinks and the motion of the particles slows down. 

At first this is not a problem, but as one approaches absolute zero, the closer the particles 

are, the greater the certainty of their location since a particle is blocked by its neighbors, 

and in any case the momentum uncertainty increases, i.e. the velocity of the particles 

increases. Absolute zero motion in a solid is a state in which all the particles stand in place, 

and this is a state of a definite position and a definite momentum, and therefore this is 

impossible. 

2. Harmonic Oscillator - In classical physics there are oscillations with angular frequency 𝜔, 

and any energy can be set in in the system. In quantum physics the possible energy levels 

are, 𝐸𝑛 = ℏ𝜔 ⋅ (𝑛 +
1

2
) 𝑛 when n is a non-negative integer. We see in this expression, 

"quantization of energy level values": that is, the permissible energy does not receive any 

value, but depends on n, which is an integer, and therefore defines discrete values. 

Beyond the quantization of energy level values, it can be seen that there can be no zero 

energy, but the minimum is some kind of energy. Admittedly, very very small in everyday 

terms. This is due to the principle of uncertainty: if there was zero energy - then the body 

 
7 Stephen Hawking, "A Brief History of Time," p. 
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would stand in a certain place. "Standing" means having a definite momentum (zero), in 

a certain place, that is, in a definite place at the bottom of the potential well, and this is 

contrary to the principle of uncertainty. 

The uncertainty principle can be extended to other physical quantities as well. There are pairs of 

physical sizes that can never have a common eigen-state. The eigen-state of the one will require 

the superposition of the eigen-states of the other. There is a relatively simple mathematical way 

(but goes beyond our field of study8), Through which such pairs of physical sizes can be identified.  

The principle of uncertainty is part of the fundamental principles of quantum physics, and is 

therefore at its core. True, it is mathematically derived from more basic principles, but as part of 

our study in high school, this cannot be explained, so we will present it to students as part of the 

nucleus. This is an essential innovation that exists in quantum physics, and has no equivalent in 

classical physics. We will emphasize again that this is not a classical uncertainty resulting from a 

lack of knowledge, but an essential principle in quantum physics. 

As an example it is recommended to give students the worksheet on measuring and collapsing 

the wave function in a two-level system presented below and comparing the theoretical 

understanding and the results of the experiment using simulation (in the following pages).  

Raspberry activity: Measurement and collapse of the wave function in a two-level system. This 

activity is intended to connect the chapter that dealt with the measurement and waves of matter 

and the principle of uncertainty. In this activity the student becomes acquainted with the concept 

of spin, and the uncertainty that exists between its components.  

The following pages provide an example of a raspberry-like worksheet. In the example the students 

start from predicting results based on their theoretical understanding and can proceed to an 

experiment that can be conducted through simulation. The experiment in the simulation illustrates 

what they saw theoretically. The experiment demonstrates how the wave function collapses, and 

the electron "forgets" the results of previous measurements, but if the same measurement is 

repeated twice in a row (without measuring in the vertical direction in the meantime), the 

measurement result will be preserved. In this experiment it is difficult to see what the result of 

measuring in a direction other than one of the axes will bex or z. To see the angular dependence 

(the cosine square of the angle) it is recommended to perform a quantitative experiment in which 

the angle is changed and the percentage of electrons passing is recorded. We brought the results 

of the experiment after the worksheet. 

Worksheet: Measuring and collapsing the wave function in a two-mode system 

We explained that the wavelength of a particle means that the particle can be in a state that is a 

superposition of different locations, at different probabilities. We emphasized that this does not 

mean that we do not know the location of the particle, but that its location is not defined as one 

 
8This is related to the alternation of the operators representing the physical quantities. If the operators 

are alternate they can find common self-states, if they are not alternate they have no common self-
states. 
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location but as many locations, and this means a probability that will be expressed in the case of 

measurement. 

We have expanded this definition not only for location, but for any physical quantity such as 

momentum, energy, angular momentum and more. A particle can be in a state that is a 

superposition of different states, even if classically a physical property of a particle is uniquely 

determined, and it is not possible for a particular particle to have two values of the same physical 

size. 

We have seen that the uncertainty principle sometimes does not allow different physical 

quantities (such as position and momentum) to have a single value at the same time, so if in terms 

of one quantity we are in a state where size has a defined single value, the other physical quantity 

must be superimposed on different states. This means that if we measure the value of the one 

magnitude, the wave function will collapse anyway and we will get the particle in a single defined 

state of the measured magnitude. In this situation it will be assumed that the second magnitude 

will certainly be in a state of superposition of different states, even if before the measurement it 

was in a single defined state. 

In this worksheet we would like to talk about a new physical size that you have not yet learned 

about - the spin (Hebrew: סחיריר). What is a spin? The most convenient way to observe the spin 

is to treat it as a rotation of a particle around its axis. When we say "an electron has a spin" it 

means that we can construct a model in which the physical-mathematical description is such as if 

the electron has a spin. In fact, there is really no spin as there is really 

no electron - there is a model that describes the world. The electron is 

an idea. A way to represent the world. So far, this way, is consistent 

with the results of experiments, so it is a successful model. Therefore, 

we can say: "There is an electron, and an electron has a spin." 

According to our model, the electron, as a particle with an electric 

charge, produces a magnetic field in its motion. In fact, the magnets 

we encounter are usually formed by the fact that the spins of the 

particles are all arranged in the same direction, and thus they connect 

to the size of a significant magnetic field. Also the medical imaging 

deviceMRI is based on measuring the spins of the protons in the body. 

In an experiment conducted in 1922 by German physicists Otto Stern and Walter Gerlach, it 

became clear that the electron had a spin that could have only two values:. We will not focus on 

this in the current framework, and will simply refer only to the sign of the spin value, noting that 

each measurement of the spin can have one of two results: a positive spin or a negative spin. The 

spin of the electron can be measured in any possible direction, and we will always get in the 

direction we tested one of the two results: a positive spin or a negative spin. In Stern's experiment 

and your measurements the measurement was made by moving the electron through a changing 

magnetic field. The direction of change of the magnetic field is the direction in which we measure 

the spin. If we take an electron at random and measure its spin in a certain direction there is a 

50% chance that we will get a positive spin, and a 50% chance that we will get a negative 

spin.
ℏ

2
 , −

ℏ

2
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It turns out that similar to position and momentum, according to the principle of uncertainty, the 

spin in its various directions is not known at the same time. In other words, a spin is defined in a 

certain direction, which we mark as an axisx, is necessarily a state of superposition of a spin in a 

vertical axis perpendicular to it (y or z). That is, if we measure the spin in the direction of the x-axis 

we get a certain result. In such a case the wave function that existed would collapse, and now the 

electron will have a single and defined spin-x (and not a superposition) and necessarily a state of 

superposition (with a probability of 0.5-0.5) in its vertical axis (y or z). In the same way, a spin 

defined on the z-axis is necessarily a state of superposition (with a probability of 0.5-0.5) on the x-

axis. 

Because spin has only two possible modes in each measurement, a spin measurement experiment 

can be a convenient example of measuring and collapsing the wave function, due to the simplicity 

of the probability calculations in a small number of different possibilities. 

We will now describe a number of possible experiments. In each of them we indicated what the 

result of the experiment would be. If there is more than one result, indicate the results and what 

will be the chance (in exact percentages, or in a rough estimate) of getting each of the results. As 

mentioned, in any measurement the result can be + or -. 

Next we will check the results using computer simulation. At this stage the results should be 

recorded according to your theoretical understanding only. 

1. Take a random electron and measure its spin in the axis direction x. 

outcome: 

 

 

 

2. Measure the spin in the direction of the axis to the electron x and the result + was 

obtained. Now measure his spin again in the direction of the x-axis. 

outcome: 

 

 

 

3. Measure the spin in the direction of the axis to the electron x and the result + was 

obtained. Now measure its spin in the direction of the z-axis. 

outcome: 

 

 

 

4. Measure the spin in the direction of the axis to the electron x and the result is obtained. 

Immediately afterwards his spin was measured in the direction of the z-axis and the 

result + was obtained. Now measure his spin again in the direction of the x-axis. 

outcome: 
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5. Measure the spin in the direction of the axis to the electron x and the result is obtained. 

Immediately afterwards measured his spin in the direction of the z-axis and the result 

was obtained -. Now measure his spin again in the direction of the x-axis. 

outcome: 

 

6. Measure the spin in the direction of the axis to the electron z and the result + was 

obtained. Now measure its spin in the direction of the z axis.15° outcome: 

 

We will now try to test these experiments with the help of computer simulation. We will go to 

the following link:  

https://phet.colorado.edu/sims/stern-gerlach/stern-gerlach_en.html 

 

In this simulation we will be able to perform the experiments we tried to answer. There are two 

green rectangles that control the experimental system. In the top rectangle we can determine the 

number of spin measurements made one after the 

other (each measurement by a magnet, up to 3 

measurements - as was the case with the questions 

we asked earlier). You can also determine the 

direction of each measurement. Note that the angle 

indicates the axis0°z while the angle indicates the x-

axis. In each detector we can choose which electrons 

can proceed to the next detector - for those that 

received a positive spin value (up) or for those that 

received a negative spin value (down). Other 

electrons will be blocked and will not move to the 

next detector. In this way we can, in case we know 

the result in one measurement, know what will 

happen in the measurement that follows.−90° 

The second green rectangle allows us to control the measured electrons. You can shoot 

them quickly or slowly, or individually. You can give them a pre-determined or random 

spin. It should be noted that in order to arrive at a result that correctly represents the 

statistical probability, measurements must be made on many electrons. 

The measurement results for each detector are presented both in detail of the number of 

electrons that received a positive spin value and the number of electrons that received a 

negative spin value, and as a pie chart indicating the positive percentage (red) and the negative 

percentage (blue). 

We will try to examine the results for all the experiments we presented earlier, and compare with 

the results we observed. In some cases we will try this in a number of ways. We will try to 

understand why the different ways are in fact equivalent ways to the same measurement. 

https://phet.colorado.edu/sims/stern-gerlach/stern-gerlach_en.html
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1. Select a random spin in the left rectangle, and measure the spin x (i.e., in the top rectangle an 

angle of) is selected. We will launch many electrons and see the statistics.−90° 

outcome: 

We will repeat the same measurement with a spin set in the direction of the axis z. Will we 

get the same result? why? 

 

2. Launched electrons with spin x Positive. We will measure spin -x. 

outcome: 

Launched many electrons with a random spin, measured spin x, and we will only allow the 

results up to continue. For the electrons that continue, we will measure the spin again in the 

direction of the -x axis. Will we get the same result as in the case of launching electrons with 

a positive spin x? why? 

 

3. We will take random electrons and measure their spin x and then the spin z. A parallel 

experiment is to measure spin z for electrons with a positively defined spin x. 

outcome: 

4. Random electron launches, we measure the spin in the axis x, let the results down continue, 

we will measure the spin in the direction of the z axis, let the results up continue, and we will 

measure again in the x axis. 

outcome: 

 

5. Random electron launches, we measure the spin in the axis x, the down results can be 

continued, we will measure the spin in the direction of the z axis, the down results can be 

continued, and we will measure again in the x axis. 

outcome: 

 

6. Random electron launches, measured in direction z and allow the positives to continue (in a 

parallel experiment it is possible to start with electrons with a positive spin z and give up this 

measurement). Now measured at an angle of.15° 

outcome: 
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The image on the left shows 

the graph obtained from 

inserting the simulation results 

into a computerized 

datasheet. Change the angle 

of the magnet and record the 

percentage of electrons with 

the spin "up ". 

 

 Raspberry activity: an 

experiment in which the 

percentage of electrons with 

spin is measured "up 

"detected by the detector 

depending on the angle of the 

magnet. 

 

 

 

Chapter 3 - The Mathematics of Quantum Physics 
As stated, the wave function of a particle describes the probability that the particle will be in one 

position or another. Sometimes the wave function is not about the probabilities of different 

locations but about the probabilities of being in some physical state. 

We will now want to build the mathematical system with which we will work in quantum physics. 

Mark Dirac 
We will mark a physical state as follows:. Inside the bracket you can write any number, letter or 

sign that will define the situation:|𝜓⟩|𝑎⟩ , |𝑏⟩ , |1⟩ , |2⟩ , | ↑⟩ , | ↓⟩ … .  

Usually we are talking about the set of self-values that are relevant to the situation and not about 

the physical sizes that are in the superposition. 

It should be understood that different self-states, that is, different values of the same physical 

magnitude are orthogonal - that is, contradictory (classically).  
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You can also mark the situation as follows:. There is no difference between the meanings of the 

markings⟨𝜓|9, But in most cases we will mark in the first way we have presented, as detailed 

below. 

Suppose we have two states of some kind, which describe certain physical quantities, (read: "Pi", 

"Pesi"). The situations are not necessarily contradictory, so given that we are in a situation there 

is some probability that in a proper measurement, we are found to be in a situation. We will define 

this probability as follows:|𝜓⟩, |𝜑⟩|𝜓⟩|𝜑⟩ 

⟨𝜑|𝜓⟩2 

We emphasize that this is true if composite 
numbers are not included. If you choose to 
include complex numbers (and this is the more 
comprehensive presentation) the absolute value 

of the expression must be squared.⟨𝜑|𝜓⟩ 

In words: the probability of getting the situation 
measured, given that it is known (from a 
previous measurement) that we are in the 

situation.𝜑𝜓 

Note: At this stage, it is not yet clear to the 
students what the arithmetic exercise needs to be done to get to the stage where something needs to 
be raised squared, rather than what is raised. This is a definition only. 

The check ⟨𝜑|𝜓⟩Expresses the overlap between the modes. These are parentheses (bracket), so we 
denote a condition by marking the machine ket or by marking the machine bra. There is no physical 

difference between bra and ket.|𝜓⟩⟨𝜓| 

Probability of gaining self-worth in the case of a superpositional state of two contradictory 
states 
To understand the meaning of this we will first talk about two contradictory states, i.e. two states 
that each describe a single value (not a superposition) and a different one of a certain physical 
magnitude. We will mark the situations. We have assumed that the situations are contradictory and 

therefore, if we are in the situation|𝑏⟩, |𝑎⟩b, the chance of finding the value a in the measurement is 
zero. We will mark this:. In words: the chance of measuring a given that we are in state b is zero. 
Therefore we know that for conflicting situations, their overlap is zero:. In addition, it is clear that 
if we are in state a, then in the measurement we will get the value a. Therefore, the chance of getting 

a is 1. We will mark this:. Mathematical reasons not listed here are accepted (and not 1-)⟨𝑎|𝑏⟩2 =

0⟨𝑎|𝑏⟩ = 0⟨𝑎|𝑎⟩2 = 1⟨𝑎|𝑎⟩ = 110. 

Important fact (we will not prove its correctness here): it should be emphasized that given two 

situations (not necessarily contradictory) |𝜓⟩, |𝜑⟩, Then ⟨𝜑|𝜓⟩ = ⟨𝜓|𝜑⟩. That is, if when we are in 

 
9 In fact, the difference between the notations is in terms of the mathematical representation, and less 

in terms of the physical meaning, so in the context of the material studied here we will not address the 
difference between them. 
10We here completely ignore the mathematical issue of complex numbers. The positive value is obtained 

because of the positive property of the inner product. The product of each vector itself is a non-negative 
quantity. 
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a state there is a certain probability of being in a state𝜓𝜑 (E.g., a probability of 0.3), then if we are in 

a situation, we will have the same certain probability (0.3) of being in a situation.𝜑𝜓  

We will now look at a state that is a superposition of two conflicting states a and b.We will record 
this as follows: 

|𝜓⟩ = 𝐴|𝑎⟩ + 𝐵|𝑏⟩ 

When they are some numerical coefficients (in fact they can not get any value, we will see this later). 
Remember, as soon as we make a measurement, the wave function will collapse, and we will have 

one and only value - self-value, of physical size. We can get in measurement or𝐴, 𝐵a or b. What is 
the probability that given the state of the superposition we will get in measurement the value a (i.e., 

that we are in the state)?|𝜓⟩|𝑎⟩ 

We will perform the mathematical move of the overlap: 

⟨𝑎|𝜓⟩ = ⟨𝑎| ⋅ (𝐴|𝑎⟩ + 𝐵|𝑏⟩) = 

Students' attention should be drawn to the procedure: place the appropriate place in the overlap. 

Then perform multiplication:|𝜓⟩ 

= ⟨𝑎|𝐴|𝑎⟩ + ⟨𝑎|𝐵|𝑏⟩ = 𝐴⟨𝑎|𝑎⟩ + 𝐵⟨𝑎|𝑏⟩ = 

The constants are allowed (and should) be taken out of braket. Remember, we do not justify the 
procedure mathematically, just explain how to do it. 

We have seen above, that the physical meaning of is to find size in measurement ⟨𝑎|𝑎⟩a Given that 
we are in state a (remember, state a is not a state of superposition), and the probability of this is 1. 
Also, we have seen that the physical meaning of it is to find the magnitude a given given that we are 
in state b (also b is not a state of superposition), and because they are contradictory states , The 

probability of this is 0. Therefore:⟨𝑎|𝑏⟩ 

= 𝐴 ⋅ 1 + 𝐵 ⋅ 0 = 𝐴 

And so the probability is. Similarly the probability of being in a situation is⟨𝑎|𝜓⟩2 = 𝐴2|𝑏⟩𝐵211. 
That is, in a state that is a superposition of different states (even in the case of more than two states), 
the coefficient of the square of each state and state expresses the probability of being in the same 
state. It follows that if and are the only possible values, in this case it should exist. The coefficients 
can also be negative, but never will any coefficient be less than or equal to its absolute value of 

1.|𝑏⟩|𝑎⟩𝐴2 + 𝐵2 = 1 

Probability of getting self-value in case of superposition mode of two superposition modes 

We will now want to learn how to calculate overlaps and probabilities between two superposition 
modes. Suppose a system has two possible conflicting states, for example: two possible locations. 
Let us look at the two superposition modes of the position. The first state is a state with some definite 
energy, that is, a self-state of energy. This mode is a superposition mode of the placements. We will 

express it as follows:|𝑏⟩, |𝑎⟩𝜓𝐸1 

|𝜓⟩ = 𝐴|𝑎⟩ + 𝐵|𝑏⟩ 

 
11 It is worth noting to students that in general it is possible to talk about composite coefficients, and 
then the probabilities are the square of the absolute value of the coefficients. 
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The second state, the state, which is not a self-state of energy, and is not a self-state of position, but 
a self-state of momentum, that is, a state with some definite momentum that we signify. Since this 
state is not a state of self of the position, but a state of superposition of the positions, we will express 

it as follows:𝜑𝑝2 

|𝜑⟩ = 𝐶|𝑎⟩ + 𝐷|𝑏⟩ 

Of course, are numerical coefficients that meet the necessary conditions, that is, the equations are 
met as well.𝐴, 𝐵, 𝐶, 𝐷𝐴2 + 𝐵2 = 1𝐶2 + 𝐷2 = 1 
Note that if the two states are not contradictory they are not necessarily self-states of the same 
physical magnitude. After all, different self-states of one physical magnitude are necessarily 
contradictory - it is not possible for us to be in two different positions (or energies, or motives, etc.) 
at the same time. To do this, we chose two modes, each of which is a self-state of a different 
magnitude - of energy and of momentum. At the same time, in this calculation we have expressed 
each of these states as a superposition of position states. For simplicity we have chosen here in a 
world where there are only two location modes. We will mention again that when we describe any 
situation according to the self-states of the position we say that "we describe according to the basis 
of the position". According to the principle of uncertainty, when describing the self-state of 
momentum with the aid of the position base, it will never be described as a superposition of different 

position states.𝜓, 𝜑𝜓𝜑 

We are interested in knowing, given that we are in a situation, what the probability is of being in a 
situation. We will emphasize the physical meaning of the question: Given that we are in a state, that 
is, we measured the energy and the result obtained in the measurement was, that is, we are in a state; 
What is the probability of being in a state, that is, if we now measure the momentum, what is the 

probability that the result obtained is.𝜓𝜑𝜓𝐸1𝜓𝜑𝑝2 

We will now perform the calculation. For the purpose of the calculation we need to calculate the 

overlap, i.e. the overlap between the state of the⟨𝜑|𝜓⟩good and ket mode. To do this, we will need 
to write the situation as a good situation. This is done simply by turning each ket into a bra, i.e 

.:⟨𝜑||𝜓⟩|𝜑⟩ 

⟨𝜑| = 𝐶⟨𝑎| + 𝐷⟨𝑏| 

And the overlap will be: 

⟨𝜑|𝜓⟩ = (𝐶⟨𝑎| + 𝐷⟨𝑏|)(𝐴|𝑎⟩ + 𝐵|𝑏⟩) = 𝐶𝐴⟨𝑎|𝑎⟩ + 𝐶𝐵⟨𝑎|𝑏⟩ + 𝐷𝐴⟨𝑏|𝑎⟩ + 𝐷𝐵⟨𝑏|𝑏⟩ =

= 𝐶𝐴 ⋅ 1 + 𝐶𝐵 ⋅ 0 + 𝐷𝐴 ⋅ 0 + 𝐷𝐵 ⋅ 1 = 𝐶𝐴 + 𝐷𝐵 

Thus, the probability of measuring momentum given the energy state is: 𝑝2𝐸1 

⟨𝜑|𝜓⟩2 = (𝐶𝐴 + 𝐷𝐵)2 

Of course, if the coefficients are not real, then the absolute value of the overlap should be 
squared. 

 Another example: 
Note that both the previous example and the example below are examples related to the physical 
body of knowledge of quantum physics. They are not the nucleus, because Dirac marks and the 
mathematics that accompanies them are only a "means" to be able to create predictions for 
experiments. Dirac markings are not "deep physical principles", but a way of expressing the 
principles using a page, pen and calculator. 
Take for example the spin modes. There is a base of spin (reminder: "base" means the physical size 
by which we represent the state). His limbs are marked (spin left; spin right), and there is a base of 
spin, his limbs are marked (spin up; spin down). When talking about the spin of the particle in the 
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axis𝑥|→⟩ , |←⟩𝑧|↑⟩ , |↓⟩z, then in the x-axis it is in the superposition. Therefore, the spin organs can 

be presented as follows:𝑧 

|↑⟩ =
1

√2
|→⟩ +

1

√2
|←⟩ 

|↓⟩ =
1

√2
|→⟩ −

1

√2
|←⟩ 

• Note that the selection of the coefficients' marks is almost arbitrary: what is important is 
that in one of the "up" or "down" modes the coefficients will have a mark Same (in our 
example, in "Spin Up"), And in the second situation have a mark Reverse (one positive 
coefficient and one negative). This is to ensure that the situations are contradictory, that is, 
their overlap will give zero, since in the measurement we will not be able to get the two 
values "spin up" and "spin down" together (think and make sure that the overlap is reset!). 
It is worth reminding students that the equation should match the result of the measurements 
and not the other way around ... 

• The numerical values of the coefficients () are due to the fact that there are only two possible 
spin modes and they have an equal probability. Remember, the coefficient square is the 

probability of getting the measurement value.
1

√2
 

• Students should be given an exercise:  
Calculate the overlaps. Remember the results of the activity we did in the Stern-Gerlach 

experiment, as the results match what we saw in that activity.⟨ ↑ | ↑⟩  , ⟨ → | ↑⟩  , ⟨← | ↑⟩  ,

⟨ ↑ | ↓⟩  , ⟨→ | ↓⟩  , ⟨ ← | ↓⟩ 

Example: What is the probability that a spin will be measured "left" (vintage) x) Given that we 
measured a spin "down" (in the z-axis)? 

⟨← | ↓⟩ = ⟨←| ⋅ (
1

√2
|→⟩ −

1

√2
|←⟩) =

1

√2
⋅ (⟨← | →⟩ − ⟨← | ←⟩) = −

1

√2
  

So the probability is as we know, that the chance is 50% to get a spin left given that the situation is 

down. (−
1

√2
)

2
= 0.5 

Note: When calculating such overlaps with the students, then in the first stages write the states of 
thebra and ket modes, open parentheses and calculate all overlaps. In more advanced stages this can 
be done more quickly, and show students that the only things that contribute to the overlap are the 
multiplications of the coefficients of the same organs. For example, if the data states: 

|𝜓1⟩ = 𝑎 |1⟩ + 𝑏 |2⟩ + 𝑑 |3⟩ 

|𝜓2⟩ = 𝑒 |1⟩ + 𝑓 |2⟩ + 𝑔 |3⟩ 

After all, the overlap will be: 

⟨𝜓1|𝜓2⟩ = 𝑎𝑒⟨1|1⟩ + 𝑏𝑓⟨2|2⟩ + 𝑑𝑔⟨3|3⟩ = 𝑎𝑒 + 𝑏𝑓 + 𝑑𝑔 

Here we have omitted all the reset overlaps. 

Another example: 
We now want to treat measurements in different directions, and not just in directions that are 
perpendicular to each other. 
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We have seen in the past, with the help of imaging, that given a spin in a certain direction, then if we 

measure the spin at an angle 𝜃 From the original direction, the chance that we will get a positive spin 

name is given by the expression cos2 𝜃

2
. Hence of course it follows that the probability that there is 

a negative spin, i.e. opposite in its direction, is the complementary probability, i.e .: 

1 − cos2
𝜃

2
= sin2

𝜃

2
 

From this the situations can be written with the help of Dirac markings as follows: 

|𝜃+⟩ = cos
𝜃

2
|𝑥+⟩ + sin

𝜃

2
|𝑥−⟩ 

Meaning: The condition means a positive spin in the measured direction, i.e., |𝜃+⟩At an angle 𝜃 
From the axis, which was the original direction, and consists of a superposition of the various spin 
states in the original measuring base (which was in the direction or in the opposite direction to it, it 

is sometimes convenient to mark the whole base𝑥𝑥+𝑥− in brief: ). 𝑥± 

|𝜃−⟩ = −sin
𝜃

2
|𝑥+⟩ + cos

𝜃

2
|𝑥−⟩ 

Meaning: The situation means a negative spin in the measured direction, ie, |𝜃−⟩At an angle 𝜃 From 
the axis H, which was the original direction, and consists of a superposition of the various spin states 

in the original (which was) measurement base.𝑥𝑥± 

Rationale for how to write the situations: Students usually have no problem with the situation. They 
understand this from the previous line, and from the results of the experiment they received (see the 

quantitative experiment with the help of the Stern-Gerlech experiment). Given the|𝜃+⟩To accept, 
the probability is. Therefore, given, the chance of getting is the complementary probability, 

i.e.,.|𝑥+⟩|𝜃+⟩ cos2 𝜃

2
|𝑥+⟩|𝜃−⟩ sin2 𝜃

2
 

Hence the coefficient of is (the root of the probability). The minus sign is intended to take care of the 
orthogonality of the two situations and, that is, to make sure that the overlap between them is zero. 
It was possible to put the minus even before the coefficient of the cosine, but we chose to mark it 
this way, because it fits the way we mark the coefficients with polarization of light, and there it is 

obtained in a really geometric way (see below).|𝑥+⟩ 𝑠𝑖𝑛
𝜃

2
|𝜃+⟩|𝜃−⟩ 

Note that the coefficients in the square express the probability, so the + or - sign in front of them 
does not affect the probability, which of course is important as stated above, to keep the relative sign 
between some state members: in one situation it is important that the coefficients' signs are the same 
and in the other Different. In general, for two situations to be contradictory, the sum of the multiples 
of their coefficients must be zero. 

We can now calculate probabilities for spins in different directions, given a known spin result. We 

will compare the calculations to the simulator https://phet.colorado.edu/sims/stern-

gerlach/stern-gerlach_en.html 

Another example: polarization of light 

https://phet.colorado.edu/sims/stern-gerlach/stern-gerlach_en.html
https://phet.colorado.edu/sims/stern-gerlach/stern-gerlach_en.html
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The polarization of a wave is the direction in which the wave oscillates. For example, in a string, 

whether the wave is standing or moving, the direction of the oscillations, which is perpendicular 

to the string, is called the polarization direction. Light is an electromagnetic wave, so perpendicular 

to the direction of light progression is the direction in which the electric field oscillates, and it is 

defined as the polarization direction (we chose the direction of the electric field and not the 

direction of the magnetic field. This choice is arbitrary, 

but is the accepted choice). Assuming that the wave is 

advancing in the axis direction, then the polarization can 

be horizontal - in the axis direction𝑧𝑥, Or vertical - in the 

axis direction, or also in all kinds of directions. 𝑦 

The effect of polarization can be seen with the help of a 

polarizer (polarizer) - A device that allows light to pass 

only at a certain polarization. We can put the polarizer 

vertically or horizontally. If we place the polarizer 

horizontally, then horizontally polarized photons will 

pass through it, and those that are vertically polarized 

will not pass through it. Therefore, when two poles are 

facing each other, all the photons are blocked and light 

does not pass through the two poles. 

We will describe a phenomenon, and then explain it 

with the help of quantum physics: when two poles are 

placed opposite each other, the intensity of light varies 

according to the relative direction between them. 

When their polarization direction is parallel - the 

intensity of light passing through them is maximal and 

when their polarization directions are perpendicular to 

each other, the intensity of lightThe fetus is zero. 

Surprisingly, adding a third polarizer, between them at 

some angle, increases the intensity of the light. This is an intriguing and bizarre experiment. 

The polarization phenomenon is quantum. That is, horizontal polarization and vertical polarization 

are contradictory situations. Polarization at any angle (relative to the horizontal axis) is a 

superposition of horizontal and vertical polarization. There are basically two states here:, and 

every other state is a geometric superposition of these two states. We will write down the 

expressions for the situations and then explain:𝑥, 𝑦 

|𝜃⟩ = cos 𝜃 |𝑥⟩ + sin 𝜃 |𝑦⟩ 

|𝜃⊥⟩ = − sin 𝜃 |𝑥⟩ + cos 𝜃 |𝑦⟩ 

Explanation: The position at an axis angle is actually a geometric superposition of sine and cosine 

(like any normal decomposition of a vector). The contradictory state, perpendicular to it, is in fact 

a state in the addition of, and remember:𝜃𝑥90° 

cos(𝛼 + 90°) = − sin 𝛼            sin(𝛼 + 90°) = cos 𝛼 
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If there is any vector at an angle from the positive direction of an axis, then its components will 

be:𝐴𝜃𝑥 

𝐴𝑥 = 𝐴 ⋅ cos 𝜃             𝐴𝑦 = 𝐴 ⋅ sin 𝜃 

If we take a vector perpendicular to it (of the same size), i.e. at an angle, then its components will 

be:𝜃 + 90° 

𝐴𝑥
⊥ = 𝐴 ⋅ cos(𝜃 + 90°) = −𝐴 ⋅ sin 𝜃             𝐴𝑦

⊥ = 𝐴 ⋅ sin(𝜃 + 90°) = 𝐴 ⋅ cos 𝜃 

From these expressions derives directly the representations to the states we have written to the 

polarization states. Calculating the overlap will show that these are conflicting situations (i.e., the 

overlap is equal to zero).⟨𝜃⊥|𝜃⟩ 

It should be noted that the expressions we wrote to describe the polarization are reminiscent of 

those we wrote in the spin, but in the polarization the angle appears (as we explained in a simple 

geometric way), and in the spin - half the angle. It has to do with the question of 

themContradictory states, whether states with a vertical angle of 90 degrees (polarization) or with 

the opposite direction, at an angle of 180 degrees from each other (spin). 

The following pages offer a quantitative experiment for the examination of polarization. The 

probability is measured by the intensity of the light. The light intensity is actually proportional to 

the amount of photons. This amount, stems directly from their probability of crossing the polarizer. 

The experiment can be performed in several ways, and students should be asked to predict the 

results before the experiment. 

Experimental set-up: three polarizers in a row. The first can be fixed, the second can be rotated in 

any direction we want (around an axisz), and can be removed, the third can be rotated (around 

the z axis). Light is projected through the polarizers, and its intensity is measured using a light 

sensor (It is also possible on the mobile phone in a suitable application). 

step one: Polarization Calibration. 

Place the first polarizer in front of the light source.  

1. Measure the maximum intensity of light with a single polarizer.  

2. Add the third pole (do not add the second, yet) and find the angle at which the third pole 

is perpendicular to the first. 

3. Find the angle at which the third polarizer is parallel to the first. 

4. Add the second polarizer and find the angle at which the second polarizer is perpendicular 

to the first. Note that one can find the angle at which the second polarizer is perpendicular 

(or parallel) to the first by direction of the third polarizer parallel to the first, and find the 

maximum (parallel) and minimum (vertical) intensities depending on the angle of the 

second polarizer. 

second level: Finding the relationship between the probability that the photons will pass (i.e., the 

illumination intensity) and the relative angle between the first and third polarizers (without The 
second polarizer) (The resulting relationship is) Find the illumination intensity when there are two 
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polarizers.I ∝ cos2 𝜃 Do it from a situationWhere the polarizers are parallel to each other and until 

the polarizers are perpendicular to each other. Measure the relative angle in jumps of10°. 

5. Present the results in a graph of light intensity as a function of the relative angle between 

the polarizers. Look at a 0 degree angle and a 90 degree angle, and try to guess what the 

function is in the graph. Add a new variable with which you can construct a linear graph 

to confirm your hypothesis (hint: remember the experiment we did with the simulation). 

Third stage: the effect of the middle polarizer. 

6. Place the first and third poles in a vertical position. Find out at what angles the middle 

polarizer needs to be in order for us to get maximum power? Minimal? 

7. Make a graph of illuminance depending on the angle of the middle pole (when the first 

and third are perpendicular). What is dependency? Explain this theoretically as well. 

Answer to the last section (by probability analysis only, and without Dirac markings): 

From the first polarizer emit only photons with polarization at the angle of the polarizer - it is 
called angle 0. The probability of these photons passing the second polarizer is. The third polarizer 
is at an angle from the second polarizer, so the probability of the photons passing the second 
polarizer passing through the third is as well. Thus, the probability of the photons (passing the first 
- half of the total photons) passing the second and third polarizers is the product of the probabilities 

multiplied by:cos2 𝜃 90° − 𝜃 cos2(90° − 𝜃) = sin2 𝜃 

cos2 𝜃 ⋅ sin2 𝜃 =
1

4
sin2 2𝜃 

This means that we get darkness at angles of (cases where the middle polarizer does not actually 

affect), and maximum intensity at the angle of.0°, 90°45° 

In the lab report, or in a class discussion after the experiment, it is advisable to explain the results 

while noting the measurements, the collapse of the wave function, and the use of Dirac markings. 

Polarization uses can be found at the link: https://stwww1.weizmann.ac.il/lasers/?p=4803 

 Raspberry Activity: Calculations of polarization states using Dirac markings.  

Development in time 
So far we have talked about states that do not change, but in physics there are dynamics of evolution 
over time. In classical physics the evolution of time is related to Newton's second law, by which one 
can find the acceleration, and in any case calculate the velocity and position. 

How does time evolution affect a state of quantum physics? 

We have seen in the past the relationship between energy and frequency: 

𝐸 = ℎ𝑓 = ℏ𝜔 

From this it can be concluded that each energy has a frequency (or angular velocity). In fact, every 
state of energy has a kind of internal clock that "rotates" at an angular velocity. Suppose that at the 
time the system was in a state of energy. A clock is attached to this mode at the appropriate 

frequency. We will mark the situation after a time as follows:𝐸𝑖𝜔𝑖 =
𝐸𝑖

ℏ
𝑡 = 0|𝜓𝑖⟩𝐸𝑖𝑡 

|𝜓𝑖(𝑡)⟩ = |𝜓𝑖⟩ ⋅ {𝜔𝑖𝑡} 

https://stwww1.weizmann.ac.il/lasers/?p=4803
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Note that this is not an acceptable notation, but a form of abstraction of the accepted notation and 
calculation, which include the use of complex numbers. 

We will meet the meaning of the accompanying clock when we want to calculate probabilities of 
situations. When you square the expression, you reach a state of multiplication between two clocks. 

The product will be defined as follows⟨𝜓|𝜑⟩12 Derived from the mathematics of complex numbers: 

{𝜃1} ⋅ {𝜃2} = cos(𝜃1 − 𝜃2) 

Remember that, so there is no difference between.cos(𝜃1 − 𝜃2) = cos(𝜃2 − 𝜃1) {𝜃1} ⋅ {𝜃2}{𝜃1} ⋅

{𝜃2} 

What does a state that is a superposition of different energy states look like? Suppose situations with 

energies. Status:|1⟩, |2⟩, |3⟩, … 𝐸1, 𝐸2, …  

|𝜓⟩ = 𝐴1|1⟩ + 𝐴2|2⟩ + ⋯ 

Will develop in time as follows: 

|𝜓𝑡⟩ = 𝐴1|1⟩ ⋅ {𝜔1𝑡} + 𝐴2|2⟩ ⋅ {𝜔2𝑡} + ⋯ 

In order to understand the meaning of this, we would like to look at a particle that is initially in a 
certain state, and examine its probabilities of being in one state or another after a while. Let us first 
look at a state of definite energy (as opposed to a state that is a superposition of states of different 

energies). What is the probability that after a certain time the particle will be in its initial state?𝐸 =

ℏ𝜔 

⟨𝜓|𝜓𝑡⟩ = ⟨𝜓|𝜓⟩ ⋅ {𝜔𝑡} = 1 ⋅ {𝜔𝑡} 

The probability will be: 

⟨𝜓|𝜓𝑡⟩2 = {𝜔𝑡} ⋅ {𝜔𝑡} = cos(𝜔𝑡 − 𝜔𝑡) = cos 0 = 1 

We see that in a state of definite energy, the probability does not change, and the state remains stable 
without change. 

Let us now look at a state that is a superposition of different energies. 

|𝜓⟩ = 𝐴1|1⟩ + 𝐴2|2⟩ + 𝐴3|3⟩ 

In this case, as we have seen before, the probability of being in a situation is. What will happen to 
the probability after a while? For this purpose we must calculate the overlap between the state that 

develops in time and one of the states that make it up, for example.|𝑖⟩𝐴𝑖
2|2⟩ 

|𝜓𝑡⟩ = 𝐴1|1⟩ ⋅ {𝜔1𝑡} + 𝐴2|2⟩ ⋅ {𝜔2𝑡} + 𝐴3|3⟩ ⋅ {𝜔3𝑡} 

The overlap is: 

⟨2|𝜓𝑡⟩ = ⟨2| ⋅ [𝐴1|1⟩ ⋅ {𝜔1𝑡} + 𝐴2|2⟩ ⋅ {𝜔2𝑡} + 𝐴3|3⟩ ⋅ {𝜔3𝑡}] =

= 𝐴1⟨2|1⟩ ⋅ {𝜔1𝑡} + 𝐴2⟨2|2⟩ ⋅ {𝜔2𝑡} + 𝐴3⟨2|3⟩ ⋅ {𝜔3𝑡} =   

= 𝐴1 ⋅ 0 ⋅ {𝜔1𝑡} + 𝐴2 ⋅ 1 ⋅ {𝜔2𝑡} + 𝐴3 ⋅ 0 ⋅ {𝜔3𝑡} = A2 ⋅ {𝜔2𝑡} 

 
12 This manner is due to the mathematics of complex numbers, and goes beyond the scope of the 
discussion in this essay 
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The probability will be: 

𝑃 = ⟨2|𝜓𝑡⟩2 = (A2 ⋅ {𝜔2𝑡})2 = 𝐴2
2 ⋅ {𝜔2𝑡} ⋅ {𝜔2𝑡} = 𝐴2

2 ⋅ cos(𝜔2𝑡 − 𝜔2𝑡) = 𝐴2
2 

The probability we got is the same as it was in the initial state. You can describe what we got as a 
quantum version oflaw of energy convertion. The energy of a particle does not change. Not only 
does the energy not change, but the probability of being in a certain energy does not change over 
time. 

What, then, does timely evolution mean? For this purpose, we will look at the following example: 

data two states with defined and different energies:, and in two superposition states:|1⟩, |2⟩ 

|𝜓⟩ =
1

√2
|1⟩ +

1

√2
|2⟩ 

|𝜑⟩ =
1

√2
|1⟩ −

1

√2
|2⟩ 

It is easy to see that the states are contradictory, i.e. given that the particle is in the state, the 
probability of being in the state is zero. What will happen after a while? Suppose the particle is in a 

state, what is the probability after a time that the particle is in a state?|𝜓⟩|𝜑⟩|𝜓⟩𝑡|𝜑⟩ 

|𝜓𝑡⟩ =
1

√2
|1⟩ ⋅ {𝜔1𝑡} +

1

√2
|2⟩ ⋅ {𝜔2𝑡} 

⟨𝜑|𝜓𝑡⟩ =
1

√2
(⟨1| − ⟨2|) ⋅

1

√2
(|1⟩ ⋅ {𝜔1𝑡} + |2⟩ ⋅ {𝜔2𝑡}) = 

=
1

2
(⟨1|1⟩ ⋅ {𝜔1𝑡} + ⟨1|2⟩ ⋅ {𝜔2𝑡} − ⟨2|1⟩ ⋅ {𝜔1𝑡} − ⟨2|2⟩ ⋅ {𝜔2𝑡}) = 

=
1

2
⋅ [{𝜔1𝑡} − {𝜔2𝑡}] 

And the probability will be: 

⟨𝜑|𝜓𝑡⟩2 = (
1

2
⋅ [{𝜔1𝑡} − {𝜔2𝑡}])

2

=
1

4
⋅ [{𝜔1𝑡} ⋅ {𝜔1𝑡} − {𝜔1𝑡} ⋅ {𝜔2𝑡} − {𝜔2𝑡} ⋅ {𝜔1𝑡} + {𝜔2𝑡} ⋅ {𝜔2𝑡}] = 

=
1

4
⋅ [1 − cos(𝜔1𝑡 − 𝜔2𝑡) − cos(𝜔2𝑡 − 𝜔1𝑡) + 1] =  

=
1

4
⋅ [2 − 2cos(𝜔1𝑡 − 𝜔2𝑡)] =

1

2
⋅ [1 − cos(𝜔1𝑡 − 𝜔2𝑡)] 

The result is the magnitude of the variable in time, when its variable range is between 0 and 1, i.e. 
any probability is possible, and is reached at a certain time. That is, at every moment (except for 
specific time points) there is a different probability from zero of being in a state that contradicts the 
initial state. 

As an interim summary of the issue of evolution in time, we will now look at the structure of 
periphery-body-nucleus. 

Periphery: Dynamics and the evolution of a time state in classical physics derives from Newton's 
second law (from which we can find the acceleration and in any case know how the state changes in 
time). In addition, there is of course an energy conservation law. 
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Nuclear: In quantum physics each state is accompanied by an internal clock, the frequency of its 
rotation is affected by the energy of the state. The quantum formulation of the law of conservation 
of energy is that the self-state of energy does not change, moreover, even in superposition states the 
probabilities of being in one energy or another do not change (and thus there is actually no change 
in energy). What does change? Probabilities for other physical quantities or probabilities of being in 
one state or another (provided they are not self-states of energy). 

Body: All the examples we solved and solved. 

Exercise - timely development in a system with 3 modes 

Note: Solving this exercise requires a number of mathematical calculation steps. 

Given a system with three modes. The marking of any condition is|𝑛⟩, When, and the energy of such 

a state hi𝑛 = 1,2,3Neh 𝑛 ⋅ 𝜖 (The marking is a marking only for any size having units of energy).𝜖 

Data two modes: 

|𝜓1⟩ =
1

√2
 |1⟩ +

1

√3
 |2⟩ +

1

√6
 |3⟩ 

|𝜓2⟩ =
1

√2
 |1⟩ −

1

√3
 |2⟩ −

1

√6
 |3⟩ 

 Show that the sum of the coefficients of the coefficients in each of the states is 1 (i.e., it is a .א
physical state that is written correctly). 

 Show that the two situations are contradictory, that is, given that the situation is, there is a .ב

zero probability of getting a measurement that will say that the situation is. |𝜓1⟩|𝜓2⟩ 
 ,Given that the system has started in mode. When will the system be in place? In other words .ג 

when is the chance of being in a situation 100%? If it is not possible to be in a situation, what 
is the highest probability for this situation to be reached? when will it 

happen?|𝜓1⟩|𝜓2⟩|𝜓2⟩|𝜓2⟩ 

Guidance for section C 

First, think about. Remember that, you can mark:|𝜓1𝑡
⟩𝜔 =

𝐸

ℏ
= 𝑛 ⋅

𝜖

ℏ
  

𝜔1 =
𝜖

ℏ
       𝜔2 = 2𝜔1       𝜔3 = 3𝜔1. 

Next think about.⟨𝜓2|𝜓1𝑡⟩ 

Next we calculated the, as we defined the product ⟨𝜓2|𝜓1𝑡⟩
2

{𝜃1} ⋅ {𝜃2} = cos(𝜃1 − 𝜃2). 

Enter similar organs (do not forget that).cos(𝜃1 − 𝜃2) = cos(𝜃2 − 𝜃1) 

We want it to take place.⟨𝜓2|𝜓1𝑡⟩
2

= 1 

You got an equation (trigonometric ...) - solve it!  

 Hints for solving the equation: 

Help with identity.cos 2𝛼 = 2 cos2 𝛼 − 1 

Define.𝑥 = cos 𝜔1𝑡 
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You got a quadratic equation - solve it !! 

If you solved, find the (do not forget to work in radians !!!!).𝑡 

If there is no solution to the equation, that means there can be no situation in it. We will try to see 

what the probability is⟨𝜓2|𝜓1𝑡⟩
2

= 1The maximum P for which we can get a solution to the 

equation.⟨𝜓2|𝜓1𝑡⟩
2

= 𝑃 

Reminder: The number of solutions to a quadratic equation of shape depends on the size of the 
discriminant, i.e. the expression. If it is positive there are two solutions, if it is zero there is a single 
solution, and if it is negative there is no solution. If we write for our equation the, it is easy to see 

that as we decrease the probability𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0Δ = 𝑏2 − 4𝑎𝑐ΔP we ask, so it will grow. Thus, 

the highest probability you will give a solution will be for.ΔΔ = 0 

Now find the maximum probability to get the measurement in, and the time that will elapse until we 

reach that probability.|𝜓2⟩ 

Mathematical Introduction to the Schrödinger Equation 

Operators and self-modes 

When a state is described by some function, we want to know the value (or possible values) of 

one physical quantity or another. In quantum physics, physical quantities are represented by 

operators. What is an operator? An operator is a mathematical creature that performs some 

action on a function. This can be a number multiplication, a function multiplication or anything 

else. We will also meet shear operators, i.e. operators whose operation on the function is a 

derivative operation. The operator is usually marked with a hat. Examples of operators: 

�̂�𝑓 = 2𝑓   ,   �̂�𝑓 = 𝑥 ⋅ 𝑓   ,   �̂�𝑓 = 𝑓′   ,   �̂�𝑓 = 𝑓′′    

Sometimes the function expresses a self-state of a certain physical quantity, i.e. a state in which 

that physical quantity has a single value and not a superposition. In other cases the function will 

express superposition modes. In the case of a self-state then operating the operator on the 

function will not change the function but will multiply it by the value given to the relevant physical 

size. This value is called the operator's self-value, and the function is called its self-function. 

For example (so far only mathematically, without the physical context): 

We will take the shear operator. It is easy to see that the function is a self-function of the operator, 

since: �̂�𝑓 = 𝑓′𝑓(𝑥) = 𝑒𝛼𝑥 

�̂�𝑓 = 𝑓′ = 𝛼 ⋅ 𝑒𝛼𝑥 = 𝛼 ⋅ 𝑓 

Running the operator on this specific function gave a doubling of the function in a fixed number. 

Therefore this function is a self-function of the operator. If this operator expresses a physical 

quantity we can say that the function expresses a self-state of the same physical quantity (i.e. a 

state with a single value and not a superposition), and the value of that physical quantity is of 

course𝛼. 

Note: This was a mathematical example only. In fact, the shear operator by itself does not 

represent a physical quantity. 



33 
 

Additional note: We have not shown, nor will we see below, how self-function can be found in 

general. We will always be content with presenting the self-function, and convincing that it is 

indeed so. 

 

Differential Equations 

The characteristic of most of the equations we know is that solving the equation is a particular 

value of the invisible. For example, the solution of the equation, is the value. A differential 

equation is a different type of equation. In this equation the function and its derivatives appear, 

with such and such mathematical operations, and the solution of the equation is not a particular 

value, but the function itself.2𝑥 + 3 = 𝑥 + 1𝑥 = −2 

For example, let's take the equation:. The solution to the equation is of course the family of 

functions:𝑓′ = 𝑥 + 2 

𝑓 =
𝑥2

2
+ 2𝑥 + 𝑐 

We will not learn here how to solve any differential equation, but rather give a limited number of 

simple examples that are easy to be convinced of their correctness. 

Let us look at the following differential equation: 

 𝑓′ = 𝑎𝑓 

We have seen earlier this example in the context of operator and self-function. 

The solution to the equation is as follows: 𝑓 = 𝐵 ⋅ 𝑒𝑎𝑥 

When representing some fixed quantity [it should be emphasized to the students the difference 

between the fixed number, which has a specific value in each equation, and the fixed number, 

which can be any number, i.e. there are infinite solutions here]. For if we cut we will get:𝐵𝑎𝐵 

𝑓′ = 𝐵𝑎𝑒𝑎𝑥 = 𝑎𝑓 

Let us now look at the following equation: 

𝑓′′ = 𝑎𝑓 

As we will see immediately, in this equation there is a difference between the case where it is 

positive and the case where it is negative. To emphasize this, we will split it into two cases with 

the following notation:𝑎 

𝑓′′ = 𝑏2𝑓     ,      𝑓′′ = −𝑏2𝑓 

In the first case, the function satisfies the equation (check it out!), As well as the function satisfies 

the equation. Thus, the general solution is any superposition of the two solutions:𝑓′′ = 𝑏2𝑓𝑓 =

𝐴𝑒𝑏𝑥𝑓 = 𝐵𝑒−𝑏𝑥 

𝑓 = 𝐴𝑒𝑏𝑥 + 𝐵𝑒−𝑏𝑥 

After all: 



34 
 

𝑓′ = 𝑏𝐴𝑒𝑏𝑥 + (−𝑏)𝐵𝑒−𝑏𝑥 

𝑓′′ = 𝑏2𝐴𝑒𝑏𝑥 + (−𝑏)2𝐵𝑒−𝑏𝑥 = 𝑏2(𝐴𝑒𝑏𝑥 + 𝐵𝑒−𝑏𝑥) = 𝑏2𝑓 

Note: A distinction must be made between the constant that is given in the equation, and the 

constants that are free to be any number (similar to the set in the integral).𝑏𝐴, 𝐵𝑐 

In the second case 𝑓′′ = −𝑏2𝑓The solution is different. Do we know a function whose second 
derivative is the function itself with a negative coefficient? There are two functions that do this:. 

The general solution is all their superposition:sin 𝑏𝑥  , cos 𝑏𝑥 

𝑓 = 𝐴 ⋅ cos(𝑏𝑥) + 𝐵 ⋅ sin(𝑏𝑥) 

After all: 

𝑓′ = −𝐴 ⋅ 𝑏 ⋅ sin(𝑏𝑥) + 𝐵 ⋅ 𝑏 ⋅ cos(𝑏𝑥) 

𝑓′′ = −𝐴 ⋅ 𝑏2 ⋅ cos(𝑏𝑥) − 𝐵 ⋅ 𝑏2 ⋅ sin(𝑏𝑥) = −𝑏2𝑓 

Schrödinger equation 
In classical physics, the motion of a particle is described using an equation of motion, which usually 

derives from Newton's second law. In quantum physics we 

attribute to a particle the properties of a wave, so instead of 

an equation of motion we needWave equation. A wave 

equation is an equation whose solution will give us the wave 

function that describes the state of the particle (the 

different probabilities of being in different places or in 

different situations). This equation in quantum physics is 

called the Schrödinger equation. We would like to find her. 

In the waves of de Bruyes we saw that there is a relationship 

between the momentum of a particle and its wavelength. 

That is, there is a relationship between the particle property 

(momentum) and the wavy property (wavelength). The connection is. This means that when the 

wave function has a defined wavelength (sine or cosine function) there is a defined momentum 

particle𝜆 =
ℎ

𝑝
13. If the wave function is a different function, then in mathematical ways [advanced, 

far beyond our ability at present] it can be described as a sum of sines and cosines, i.e. it is a 

superposition of different wavelengths, and in any case as a superposition of different motions. 

Let us take a state with a definite momentum, i.e. a cosine function (in the same way a sine 

function can be taken). 

Ψ = 𝐴 ⋅ cos(𝑘𝑥) 

 
13In fact, as has already been emphasized, a wave of a sine or a cosine does not have a single momentum 
but a superposition of two motions of the same size and opposite in their direction. The exact 
presentation of things is the composite presentation. We avoid this in order to make it accessible to 
students. It is worth emphasizing to the students that there are actually two motives here, but they are 
of the same size. 
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𝐴Is some numerical coefficient. We do not currently discuss its meaning. 

what is 𝑘? Is called the spatial frequency of the wave, and it expresses how dense the oscillations 

of the wave are𝑘14- The larger it is, the denser the wave oscillations will be. We will try to 

understand its meaning with the help of placement =x , This is where the wave ended a single 

wavelength, so the expression inside the cosine is equal to. That is:2𝜋 

𝑘𝜆 = 2𝜋 

We will present the De Brulee formula here and we will get:𝜆 =
ℎ

𝑝
 

𝑘 ⋅
ℎ

𝑝
= 2𝜋 

That is: 𝑘 =
𝑝

ℎ
⋅ 2𝜋 =

𝑝

ℏ
. 

We used the marking here, which symbolizes the plank constant divided by, which is a more useful 

size than the regular plank constant.ℏ =
ℎ

2𝜋
2𝜋 

Anyway, according to the context, we can now write the wave function in the form:𝑘 =
𝑝

ℏ
 

Ψ(𝑥) = 𝐴 ⋅ cos (
𝑝

ℏ
⋅ 𝑥) 

We will derive the wave function.  

Ψ′(𝑥) = −
𝑝

ℏ
⋅ 𝐴 ⋅ sin (

𝑝

ℏ
⋅ 𝑥) 

We will cut a second time. 

Ψ′′(𝑥) = −
𝑝2

ℏ2
⋅ 𝐴 ⋅ cos (

𝑝

ℏ
⋅ 𝑥) = −

𝑝2

ℏ2
⋅ Ψ(𝑥) 

That is: 

Ψ′′ = −
𝑝2

ℏ2
⋅ Ψ 

Or otherwise: 

𝑝2̂Ψ = −ℏ2Ψ′′ 

The momentum squared can be treated as an operator cutting15.  

The energy is of course a sum of the kinetic and potential energy: 

 
14 k is used in a role similar to, where the function is of location and not of time. 
15 We are talking about a squared start-up operator, not a start-up operator, in order to avoid the need 

for complex numbers.  
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𝐸𝑘 + 𝑈 = 𝐸 

1

2
𝑚𝑣2 + 𝑈 = 𝐸 

1

2
𝑚 (

𝑝

𝑚
)

2

+ 𝑈 = 𝐸 

𝑝2

2𝑚
+ 𝑈 = 𝐸 

If we refer to momentum squared as the shear operator we saw, and "activate" the two sides of 

the equation on the wave function we get the equation: 

−
ℏ2

2𝑚
𝛹′′ + 𝑈 ⋅ 𝛹 = 𝐸 ⋅ 𝛹 

This equation is called "Schrödinger equation", And is as stated the central equation in quantum 

physics. This equation is a wave equation, and isDifferential equation. A differential equation is 

an equation in which a function and its derivatives appear, where the solution of the equation is 

not to find one value or another of the variable, but the function itself. As stated, if we assume 

that the wave equation is a sine or cosine, we get that it has a defined wavelength, i.e. a defined 

momentum. Otherwise, the function will describe a state of superposition of a number of motives. 

A distinction must be made between the wave equation - the Schrödinger equation, and the wave 

function, which is in fact the solution of the Schrödinger equation. 

More examples:  

● Particle in a box (sinuses and quantization) 

● A free particle and a particle in a forbidden place - a tunnel 

Particle in a box 

A particle with mass can move in one dimension in the region 𝑚0 < 𝑥 < 𝐿. Is actually the length 

of the (one-dimensional) box in which the particle is trapped. No additional forces are acting so 

there is no potential energy here. The Schrödinger equation takes shape:𝐿 

−
ℏ2

2𝑚
𝛹′′ = 𝐸𝛹 

That is: 

𝛹′′ = −
2𝑚𝐸

ℏ2
𝛹 

The energy is positive (since there is only kinetic energy). We have already seen such an equation, 
and the solution to the equation is as follows: 

Ψ = 𝐴 cos (
√2𝑚𝐸

ℏ
⋅ 𝑥) + 𝐵 sin (

√2𝑚𝐸

ℏ
⋅ 𝑥) 

This is a case where the particle cannot come out of the box, and therefore cannot pass through the 
edges. The wave function should be continuous and therefore should exist: 
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Ψ(𝑥 = 0) = Ψ(𝑥 = 𝐿) = 0 

The condition requires that the function be composed of sines (resets to zero) and not cosines. That 

is, therefore:Ψ(𝑥 = 0) = 0𝐴 = 0 

Ψ = 𝐵 sin (
√2𝑚𝐸

ℏ
⋅ 𝑥) 

Let us now consider the condition. In order for the sine function to be reset, the expression within 

the sine (for the value) must be an integer double of. That is:Ψ(𝑥 = 𝐿) = 0𝑥 = 𝐿𝜋 

√2𝑚𝐸

ℏ
⋅ 𝐿 = 𝑛𝜋          𝑛 = 1,2,3 … 

We have ignored negative seas here, since they only add a minus to the wave function, which is 

meaningless. We ignored the case of𝑛𝑛 = 0 Since it completely resets the function of the wave, that 
is, there is no place where the particle can be - there is no particle. 

In any case, it is obtained: 

√2𝑚𝐸

ℏ
=

𝑛𝜋

𝐿
 

That is: 

Ψ𝑛 = 𝐵 sin (
𝑛𝜋

𝐿
⋅ 𝑥) 

 It is also accepted that only certain energy levels are allowed: 

𝐸𝑛 =
ℏ2𝜋2

2𝑚𝐿2
⋅ 𝑛2 

when are .𝑛 = 1,2,3, …  

We got quantization in energy levels. Some lone energy levels are allowed, and others are not 
allowed. In fact, in any physical state where the particle is limited (at least classically) to be in a 
particular region (such a state is called a related state) we will get quantization in energy levels. So 
in this case, so in the quantum harmonic motion, and so in the hydrogen atom, as we saw in the Bohr 
model. 

In this context the Bohr model (which is part of the so-called "old quantum theory") can be seen 

as a bridge between classical physics and quantum physics. This model comes with a deterministic 

approach like classical physics. In other words, according to this model there is a defined and 

unique radius for each energy level, there is no uncertainty, and the electron has no wave function. 

On the other hand, this model has quantum properties, chief among them quantization16. In this 

respect a Bohr model is found in the periphery of classical physics, but also in the periphery of 

quantum physics, as befits a theory whose main importance is historical in the transition to a 

different understanding of nature. 

 
16Interesting is the fact that the phenomenon of quantization - the appearance of certain sizes in discrete 

portions, actually gave quantum physics its name. We emphasize that this phenomenon also exists in 
classical waves, such as in the string of a guitar. In each string there are only certain possible frequencies. 



38 
 

Particle in a free place and particle in a forbidden place 

If we take a free particle - no forces and no potential energy, the Schrödinger equation takes the 

simple form: 

−
ℏ2

2𝑚
𝛹′′ = 𝐸 ⋅ 𝛹 

That is: 

𝛹′′ = −
2𝑚𝐸

ℏ2
⋅ 𝛹 

We have already seen this equation, and its solution is: 

Ψ = 𝐴 cos (
√2𝑚𝐸

ℏ
⋅ 𝑥) + 𝐵 sin (

√2𝑚𝐸

ℏ
⋅ 𝑥) 

Since there is only a sine and a cosine here, with the same wavelength, we can conclude from this 
that we have a single wavelength, i.e. one definite momentum (in fact there are two motions here 
identical in size and opposite in direction, but we will ignore this for now). We have already seen 
that in the case of a momentum defined the function of the wave is in the form of, so it can be 
concluded that in our case. This result makes sense, since there is no potential energy and 

therefore:cos (
𝑝

ℏ
⋅ 𝑥) 𝑝 = √2𝑚𝐸 

√2𝑚𝐸 = √2𝑚𝐸𝑘 = 𝑝 

Here we relied of course on the (classic) identity  .𝐸𝑘 =
𝑝2

2𝑚
 

We would now like to look at an energy particle that is in an area where there is potential 

(constant) energy that has grown so that it exists. We would like to understand the meaning of 

this first. This is similar to an energy body, which is located in an area where there is a wall that is 

high, that is, the potential energy is, but the energy of the body is smaller than this size! It is clear 

and simple that the body cannot be there. But not everything that is simple and clear to us does 

exist in quantum physics.𝐸𝑈𝐸 < 𝑈𝐸𝐻𝑈 = 𝑚𝑔𝐻 

● Show that in this case (potential energy is constant, and exists), the wave function satisfies 

the Schrödinger equation. 𝑈𝐸 − 𝑈 < 0𝛹(𝑥) = 𝑒−𝑏𝑥 

● Express yourself with the help of problem data. Note that the value of increases as the gap 

between energy and potential energy increases.𝑏ℏ, 𝑚, 𝐸, 𝑈𝑏 

Note: The wave function is not a sine or a cosine, that is, the wave function does not have a single 

wavelength, meaning it is a case of superposition of motives. 

The result we obtained is that the particle has a non-zero wave function in the "forbidden" region. 

Note that this is a descending exponential function, meaning that there is a decay of the wave 

function here. A particle that comes from the permissible region - it has a defined wavelength, ie 

a defined momentum, but in fact it has two motions that are the same size and opposite in their 

direction. Thus, when it hits a "wall" it will most likely return (in a sort of elastic collision) in the 

other direction. However, there is a different probability from zero that he will be able to cross the 
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wall. The thicker the wall, the more the wave function fades and the particle will have difficulty 

moving to the other side of the wall. However, if the wall is not too thick, the particle can pass to 

the other side, which means that there is some probability that it will be in the forbidden area 

("the wall") and through it will pass to the other side. This phenomenon is called a tunnel - 

supposedly the electron dug a tunnel and passed through it to the other side. 

There are many applications to the tunnel phenomenon. One of them is related to 

radioactive decay. A radioactive state is an unstable state. In fact, it is partially stable 

- a meta-stable state. This means that in terms of energy it is in a kind of pit that cannot 

come out of it, and in this respect it is a stable state. However, there is a relatively small 

barrier here, which has a quantum probability to cross it. If it passes it, the radioactive 

decay will take place. It is the quantum probability that makes this process statistical. 

We have seen that the starting momentum operator is: 𝑝2̂𝛹 = −ℏ2𝛹′′ 

We have seen that the self-state of a particular operator is a state described by a 

function, which when the operator operates on it will actually double the function to a 

fixed size, which is the value of the physical size. We will now look at two modes (described not by 

Dirac markings but by a wave function), and asked whether they are single-square momentum 

modes. Even if we get a positive answer, we will not be able to know in this context whether there 

is a single momentum or a superposition of two motives of the same size and in opposite 

directions. If we get a negative answer, surely there is a superposition of motives here. 

Let's look at the case. The first derivative will be:𝜓(𝑥) = 𝑒−𝛼𝑥2
 

𝜓′(𝑥) = −2𝛼𝑥𝑒−𝛼𝑥2
 

The second derivative will be: 

𝜓′′(𝑥) = −2𝛼𝑒−𝛼𝑥2
+ 2𝛼𝑥 ⋅ 2𝛼𝑥𝑒−𝛼𝑥2

= (4𝛼2𝑥2 − 2𝛼) ⋅ 𝑒−𝛼𝑥2
 

And therefore: 

𝑝2̂𝜓(𝑥) = −ℏ2𝜓′′(𝑥) = −ℏ2(4𝛼2𝑥2 − 2𝛼) ⋅ 𝑒−𝛼𝑥2
= −ℏ2(4𝛼2𝑥2 − 2𝛼) ⋅ 𝜓(𝑥) 

It's easy to see that turn onA. The operator on the wave function gave the wave function an 

indefinite coefficient, i.e. it is a case in which there is no single momentum but 

superposition.−ℏ2(4𝛼2𝑥2 − 2𝛼) 

Let us now look at the case. The first derivative will be:𝜓(𝑥) = 𝑒𝛽𝑥 

𝜓′(𝑥) = 𝛽 ⋅ 𝑒𝛽𝑥 

The second derivative will be: 

𝜓′′(𝑥) = 𝛽2 ⋅ 𝑒𝛽𝑥 

And therefore: 

𝑝2̂𝜓(𝑥) = −ℏ2𝜓′′(𝑥) = −ℏ2𝛽2 ⋅ 𝑒𝛽𝑥 = −ℏ2𝛽2 ⋅ 𝜓(𝑥) 
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It is easy to see that operating the operator on the wave function has given the wave function a 

constant coefficient, i.e. ostensibly this is a case where there is a single momentum. However, we 

note that the coefficient is negative, meaning it cannot constitute the value of the momentum 

squared. Therefore, this case is also a case of superposition. In fact, the only case where we can 

see a single momentum (square) is a sine or cosine function, or an exponential function with a 

simulated estimator (composite numbers), which is actually equivalent to sine and cosine.−ℏ2𝛽2 

Worksheet 

Answer the following questions (At the end of the worksheet you will find a "formulas page"). If 

the answer is clear to you without calculation (or with the help of a very, very immediate 

calculation), you can answer it without calculation. It is always possible (and recommended!) To 

back yourself upAs In calculating whether this can be done. 

1. Given a system with the (contradictory) situations |0⟩, |1⟩, |2⟩ .  

The energies of the states are: 𝐸0 = 0 , 𝐸1 = 𝐸 , 𝐸2 = 2𝐸 

Data for the following situations: 

|𝑎⟩ =
1

√2
|0⟩ +

1

2
|1⟩ +

1

2
|2⟩ 

|𝑏⟩ =
1

√2
|0⟩ −

1

2
|1⟩ −

1

2
|2⟩ 

|𝑐⟩ =
1

√2
|1⟩ −

1

√2
|2⟩ 

1. Given that the system is in state, what is the probability that the measurement result 

will say that we:|𝑎⟩ 

● In mode |0⟩? 

● In mode |1⟩? 

● In mode |2⟩? 

● In mode |𝑏⟩? 

● In mode |𝑐⟩? 

2. Given that the system is in state, what is the probability that the measurement result 

will say that we:|𝑎⟩ 

● In mode |0⟩? 

● In mode |1⟩? 

● In mode |2⟩? 

● In mode |𝑎⟩? 

● In mode |𝑐⟩? 

3. Are the situations contradictory?|𝑎⟩, |𝑏⟩, |𝑐⟩ 

4. Given that the system is in state in time. Wrote𝑡 = 0|𝑎⟩and An expression (as 

simplistic as possible!) Of the probability of being in a state as a function of time |1⟩𝑡 

. 

5. Given that the system is in state in time. Wrote𝑡 = 0|𝑎⟩and An expression (as 

simplistic as possible!) Of the probability of being in a state as a function of time |𝑏⟩𝑡 

. 
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6. Given that the system is in state in time. Wrote𝑡 = 0|𝑏⟩andAn expression (as 

simplistic as possible!) Of the probability of being in a state as a function of time. Is 

there a time when the probability is 100%?|𝑐⟩𝑡 

2. We will now deal with spins (of electrons). 

1. A figure in the measurement found that the spin in the axis direction is positive. What 

are the chances of finding a positive spin in the following axes:𝑥 

i. axis 𝑧 

ii. Axis at an angle of axis 15°𝑥. 

iii. Axis at an angle of axis 45°𝑥. 

iv. Axis at an angle of axis 150°𝑥. 

2. Given that we are in a situation. What are the chances of finding a negative spin in 

the following axes:|𝜓⟩ =
1

√3
|𝑥+⟩ + √

2

3
|𝑥−⟩ 

i. axis 𝑧 

ii. Axis at an angle of axis 15°𝑥. 

iii. Axis at an angle of axis 45°𝑥. 

iv. Axis at an angle of axis 150°𝑥. 

 

3. Given that we are in a situation where the probability of getting a positive spin in the 

axis direction is 25%, and in the wave function there is a minus on the limb of the 

negative spin. Write down the wave function and find the axis for which there is a 

100% probability of finding a positive spin.𝑥 

 

3. As is well known, the potential energy of a mass attached to a spring is when the spring 

is constant. Given a quantum particle with a mass attached to a fixed spring. Given that 

the wave function of the particle is. (Note the minus).𝑈 =
1

2
𝑘𝑥2𝑘𝑚𝑘𝛹(𝑥) = 𝑒− 

√𝑘𝑚

2ℏ
⋅𝑥2

 

Find the energy of the particle using the Schrödinger equation. 

Hint: Work with derivatives 

Formulas 

Two-mode wave function |𝜓⟩ = 𝐴|𝑎⟩ + 𝐵|𝑏⟩ 

probability 𝑃 = ⟨𝜑|𝜓⟩2 

Probability of one of the superposition modes 𝑃𝑎 = 𝐴2 

Development in time |𝜓𝑡⟩ = |𝜓⟩ ⋅ {𝜔𝑡} 

Angular velocity of position 𝜔 =
𝐸

ℏ
 

Multiplication between clocks {𝜙1} ⋅ {𝜙2} = cos(𝜙1 − 𝜙2) 

Positive spin mode on a pivot angle 𝜃𝑥|𝜃+⟩ = cos
𝜃

2
|𝑥+⟩ + sin

𝜃

2
|𝑥−⟩ 

Negative spin spin mode at an angled angle 𝜃𝑥|𝜃−⟩ = sin
𝜃

2
|𝑥+⟩ − cos

𝜃

2
|𝑥−⟩ 
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Schrödinger equation −
ℏ2

2𝑚
Ψ′′ + 𝑈Ψ = 𝐸Ψ 

 

 

 

 

 

 

 

Chapter 4 - Quantum Communication and Encryption 
In May 2018, the Wolf Prize for 2018 was awarded at the Knesset. The Wolf Prize, awarded in 

Israel, is considered the second most important prize in the world, after the Nobel Prize. About a 

third of the Wolf Prize winners (in areas where there is a Nobel Prize) later also won the Nobel 

Prize. In 2018 he won the Wolf Music Award for legendary searcher Paul McCartney. Prof. Wolf 

Prize in PhysicsCharles Bennett and Prof. Jill Bersard. They received the award for their 

contribution to quantum encryption, in particular for the protocol named after themBB84 (since 

1984). 

We will describe here the process - quantum key transfer. 

We will first get to know the characters: in matters of encryption we have two people who want 

to convey messages to each other, the first is called Alice and the other Bob (although there were 

those who suggested in Hebrew Aya and Boaz or Arik and Benz). The problem is that Eve wants 

to eavesdrop on them (farm in English =Eve. The verb "eavesdrop" is Eavesdropping, and the 

beginning sounds the same). 

One of the most powerful encryption ways to send a message between two people is a "one-time 

notebook" cipher. According to this method, a random cipher is compiled that is at least as long 

as the message, with the help of which the visible message is converted into an encrypted 

message. Using the same random cipher, you can also decrypt the message on the other side, and 

turn the encrypted message into a visible message. That is why this code is also called a "key". 

The big problem: how to move the key so that it is both in the possession of the sender of the 

message and in the possession of the recipient - without anyone intercepting it on the way and 

being able to eavesdrop. Suppose Alice attached some random cipher, and sent it on a note 

written in red ink on pink paper falling into the water (like the cipher books of the "Enigma") via 

a Lvov messenger - Eve can catch the messenger, steal his note (before wetting it) , Copy the 

cipher (and keep passing the note to Bob, without Alice and Bob knowing!), Listen to the 

encrypted message, and translate it with the key to a visible message. 

Another problem: the power of the method is only in one-time use of the random cipher. Every 

time you want to send a message - you have to send a new messenger with a new key, and this is 
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a very serious weakness (which has dropped a lot of secret messages throughout history). If so, 

changing keys is a challenge. 

Alice wants to safely move Lviv to a key that will serve both of them. It's some password. The 

password does not matter, it can be random. What matters is that they both knew what the 

password was and on the other hand, Eve would not know. If the key falls into the hands of Eve, 

Alice and Bob will want to know about it, and find another password. 

The method goes like this:  

Alice gives Bob a stream of photons. For each photon it measures the polarization at one of the 

bases: 

1. Horizontal / vertical base, ie checking whether the polarization is in the axis direction x 

(horizontal -) or y-axis (vertical |). We will mark this test with the + sign. Horizontal result 

- will be marked 1, and vertical result | Will be marked 0. 

2. Diagonal base, i.e. checking whether the polarization is at an angle above the axis 45°x 

(direction /) or at an angle below the x-axis (direction \). We will mark this test by marking 

X. Result / will be marked 1, and result \ will be marked 0.45° 

Alice randomly selects the test base. Bob gets the photon and checks its polarization. Bob also 

randomly selects the base of the test. 

Recall the polarization states. Horizontal polarization is and vertical polarization is, and they are 

of course conflicting situations. The diagonal polarization states can be written as superpositions 

of the vertical and horizontal states. We will record this as follows:|𝑥⟩|𝑦⟩ 

| ↗⟩ =
1

√2
|𝑥⟩ +

1

√2
|𝑦⟩ 

| ↘⟩ =
1

√2
|𝑥⟩ −

1

√2
|𝑦⟩ 

From the square of the coefficients it is easy to see that each measurement at the base is different 

from the current situation (determined by the last measurement) gives a chance Of 50% For each 

of the results. 

We will note here that it is also possible to write the superposition modes with slight 

modifications, such as sign replacements and the like. Since writing the states is only a 

mathematical tool on the way to calculating probabilities, there is a certain freedom in defining 

them (for example, doubling a state in will not change the probability which is the square overlap). 

In a sense it is reminiscent of potential energy, which is a tool on the way to calculation, and since 

what is important to us there are the differences, we have freedom in defining a plane of 

reference.−1 

There is an important point here that needs to be emphasized to students. Physics is generally 

perceived by students as an exact science that deals with truths, and so it is indeed strange that 

there is more than one truth: a number of potential energies or a number of different wave 
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functions. However, if one sees physics as a tool for understanding the world or a tool for 

predicting, one can have the freedom we have in the various presentations. 

After launching the photons and measuring them, Alice and Bob compare the bases on which they 

tested each of the photons. The comparison can be made in any communication channel, and 

does not need to be encrypted. In comparison, they do not tell each other what the test results 

were (ie, 0 or 1), but only on what basis each test was performed (ie, vertical / horizontal or 

diagonal). 

For the photons measured by both on the same basis, both obtained the same result with 

certainty. Because as soon as Alice measured the polarization at a certain base, the wave function 

of the photon collapsed to have a self-state of that particular measuring base. If Bob measures at 

the same base, he must get the same result that Alice got. 

For photons measured at different bases, no matter what the result Alice got, 1 or 0, Lvov has a 

chance Of 50% Get 1 And a 50% chance of getting 0. 

Now, Alice and Bob can take the measurement results made on the same base (the measurement 

results made on different bases do not interest them and will not be part of the encryption key, 

so they can ignore these results (delete them from the list of 1s and 0s they have)). They both 

have the same sequence of unity and zeros. This sequence can be used as the password agreed 

upon by both, that is, for the encryption key of the message. 

We will demonstrate this using the following table. It describes the bases on which each is 

measured, and the results of the measurements. The code will be determined by the 

measurements made on the same basis. 

x + + x + x + + x x x + x + + + x + x x The direction Alice 
was measuring 

/ - | / | / - | \ / \ - \ - | - / | / \ Alice's result 

+ + x x + + + + + x + + x x x + + + x + The direction in 
which Bob 
measured 

| - \ / | - - | | / - - \ \ / - - | / - Bob's result 

 1  1 0  1 0  1  1 0   0  0 1  The character that 
will enter the code  

What is the advantage of this method? Using this method you can tell if someone is 

eavesdropping, thus making sure that no one but Alice and Bob knows what the code is. why? 

Eve, the eavesdropper, could only measure the polarization each time on a random basis. Alice 

and Bob did not coordinate the bases in advance, so she was unable to know in advance the bases 

of each and every measurement. If we take the photons that Alice and Bob measured on the same 

basis (remember, the rest of the photons are not of interest to us), then in the probability that 

half of them Eve measured on a different basis than what Alice and Bob measured. The problem 

is that its measurement affected the situation. If for example Alice measured at base + and got 1, 

when Eve measures at base + she will also get 1, and when Bob measures at base + he will also 

get 1. In this case, since Eve measured at the base of the photon's self-state (created after Alice's 

measurement), then That the measurement only describes the situation to her and does not 

change it. However, if for example Alice measured at base + and got 1, if Eve will measure at baseX 

(diagonal) it will get 0 or 1 in equal odds. No matter what Eve gets, in either case 0 or 1, a bob that 

gets the photon after Eve eavesdropped on it, can get a 0 or 1 at equal odds (remember, Bob 

measures at Alice's base and not Eve's). In other words, if Eve is eavesdropped on, there is a 50% 



45 
 

chance that Bob will get a different result than Alice. Alice and Bob can compare in a visible 

channel some of the results (measured on the same basis) for the purpose of checking whether 

there are eavesdroppers or not. Of course, they will not compare everything, because they may 

be eavesdropped on for comparison, so they will only compare a particular sample. 

We will emphasize that even if Eve then knows what the correct bases were (because Alice and 

Bob talk about it on an unencrypted channel), the situations have already been changed by her 

so that Alice and Bob will know of her existence. 

Women note that about half of the photons were measured by Alice and Bob at the same base, 

and half at different bases. That is, the photons of interest to them are about half of all the 

photons sent. 

Out of those photons, if indeed Eve is eavesdropping, then in half of them she measures on the 

same base as Alice and Bob, so she does not affect them. Only in the half in which it measures at 

another base does it cause the wave function to collapse. Of these, in half Bob will get the same 

result as Alice, and in half he will get a different result than Alice. 

In total, in the case of eavesdropping, in a quarter of the relevant photons (one-eighth of all 

photons sent) Alice and Bob will be able to see traces of Eve. As mentioned, all the odds we have 

mentioned are probabilistic, and there can be considerable exceptions if it is a small number of 

photons. However, for large numbers, the odds of counting are very accurate. 

For example, if Alice launches 1024 photons, about 512 of them are measured by Alice and Bob 

at the same base. They can take 256 of them for control and 256 of them as a password. If Eve 

eavesdrops, then in about a quarter of the 256 control photons, that is, in about 64 photons, Alice 

and Bob will get different results. Such a result will indicate that there is eavesdropping. Of course, 

1024 is a small number of photons, and you can easily send a much larger number. 

Suggestion for illustration activity: 

Make notes. Each note has two sides - one blue and the other red. On 

each side of the note is written 0 or 1, so there are four types of notes: 

two sides 1, both sides 0, blue 0 and red 1, blue 1 and red 0. The number 

of notes of each type should be the same (more or less). The colors 

represent the measurement bases, and the numbers the result. 

Mix all the cards well. The class is divided into three groups: "Alice", 

"Bob" and "Eve". Alice's team gets half of the notes, and Eve's team gets 

the other half. The cards that Eve has are arranged as follows: Half of 

them are sorted according to the values of the blue side: 0/1, and half 

of them according to the values of the red side. This creates a situation where Eve has 4 groups 

of cards, in each group one side is the same (for example: red 0) and the other side consists of 

two options at random (in this case: blue 0/1). See drawing: On the other side the group does not 

know what appears. 

The group Alice randomly takes a note from the notes she has, chooses one side (color) and writes 

down the color and number and passes the note to Eve. Eve can choose one of the following two 

actions, but she must maintain consistency throughout the experiment: 
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1. Be a loyal courier, and just hand over the notes to Lviv. 

2. Eavesdrop on the call. In this way she has to look at only one side of the note (for example, 

the red side), write down its details (color and number), and pass another note to Lvov 

instead. The other note that the group Eve passes must be the same as the side she chose 

to look at, that is, if she looked at the red side and had the number 1 on it, she must pass 

a note from the pack on the red side has the number 1. She must not look at the other 

side and / or choose a note According to him. 

Bob, who receives the notes from Eve, has to choose a side (i.e., choose a color), and write 

down the result obtained (color and number). Many notes are repeated like this. It is very 

important to work neatly. 

After Alice finishes all her notes, Alice and Bob compare the colors (the colors only!). All the cases 

where Bob chose a color that is not the same as Alice's color, set aside. Alice and Bob choose a 

particular sample of notes for control. The control notes they have to find out if Eve was 

eavesdropped on, or if Eve was a loyal messenger, and then they have to create (each group 

individually) the code, and find out that they did indeed receive the same code. 

Note: The more notes there are the better we can see the statistical odds. It is likely that even 

with a relatively small number of notes we will be able to identify if Eve is eavesdropping, but see 

chances according to the probabilities we said - for this you need a relatively large number of 

notes, which may take a long time for the experiment process. 

Another version: In order to prevent the inconsistency of the Eve group from destroying the 

results, it is possible that the teacher will serve as the Eve group. In this way the game is conducted 

as a competition between the students and the teacher, the task of the students: to identify 

eavesdroppers or alternatively to create a uniform code. The advantage of the version is that Eve 

will be consistent. Its disadvantage is that the students do not experience Eve's action (which is 

significant for understanding). 

  

Exercises 

1. According to what we have read, the polarization of photons is used to perform the 

process. Why use photon polarization rather than electron spin (choose the correct 

answer)? 

1. Technically, photons (via fiber optics) are easier to transfer than electrons, which are 

particles with mass. 

2. The possibilities of modes and superposition in the spin of electrons are more 

complex and will not allow the process. 

3. As we have seen in the spin appears in the formulas half the angle instead of the 

angle, which completely disrupts the simple options of 50-50. 

Answer: Mathematically there is no difference between spin and polarization. Technically, with 

photons this is much easier, although they have not yet been able to apply the method over long 

distances. 
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2. Alice transferred 30,000 photons to Bob. Due to inaccuracies in the positioning of the 

measurement systems, there was a one-degree gap between Alice's measurement bases 

and those of Bob. That is, when Alice measured at the horizontal / vertical base she 

measured at an angle of and in the direction perpendicular to it (it does not matter if we 

call it or) that is, in my direction, and when she measured at the diagonal base she 

measured at an angle of and in the direction perpendicular to it. In contrast, Bob 

measured at the horizontal / vertical base at an angle and in the direction perpendicular 

to it, and at the diagonal base at an angle and in the direction perpendicular to it. Alice 

and Bob are unaware of the error. Beyond this error, there was no eavesdropping in this 

experiment.0°90° − 90°𝑥, 𝑦45°1°46° 
reminder: 

|𝜃⟩ = cos 𝜃 |𝑥⟩ + sin 𝜃 |𝑦⟩ 

|𝜃⊥⟩ = sin 𝜃 |𝑥⟩ − cos 𝜃 |𝑦⟩ 

 When Alice and Bob compared the measurement bases, they found that they measured .א

the same base for 15,073 photons. Can this deviation (from the expected case of half of 

the photons) be explained by the inaccuracy in the measurement? 

 Of the 15,073 relevant photons, Alice and Bob made an open comparison of 6,000 .ב

randomly selected photons. In how many photons will they discover that there is a 

difference between their results? Use Dirac markings to calculate the result. 

 ?Why in section B the question was about how many photons .ג 

 Will the deviation that Alice and Bob discover make them suspect the existence of an .ד

eavesdropper? Explain your answer. 

 
Answers: 
 There is no connection. This deviation is a statistical deviation from the expected 50% .א

(15,000), and is not related to the measurement results (affected by the measurement 
errors), but to the chance of both to choose the same measurement basis. 

 Consider one case (all other calculations are the same) - when Bob's situation is .ב
horizontal to his method i.e., what is the chance that with Alice the situation is vertical, 

i.e.. The overlap will be:|1°⟩ = cos 1° |𝑥⟩ + sin 1° |𝑦⟩|𝑦⟩ 

cos 1° ⟨𝑦|𝑥⟩ + sin 1° ⟨𝑦|𝑦⟩ = sin 1° = 0.0174 

The probability will be (after squaring) 3.046 ⋅ 10−4That is, about one in 3,283. Out of 6,000 photons, 
there is likely to be a difference in two of them. 

 All of these are probabilistic calculations, and therefore inaccurate. We discovered that .ג 
these are two photons, a very small number, and there can certainly be a deviation from 
it. 

 Such a small deviation cannot be caused as a result of ignition. Normal spark plugs .ד
should cause a deviation of about a quarter of the photons tested, i.e. around 1,500 
photons. 

3. Alice sends a stream of photons to Lviv (pictured here from left to right). 

 Does anyone eavesdrop? If so, bring evidence. If not, explain what the table would .א

look like in case someone eavesdropped. 

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  

X + + + x + x + + + x x x + x + x + + + x + x x The direction Alice 
was measuring 

/ - | - / | / - | | \ / \ - \ - \ | | - / | / \ Alice's result 

+ + x x x + + + + x + x + + x x + + x + + + x + The direction in 
which Bob 
measured 

| - \ / / | - - | / | \ - - \ \ - - / - - | / - Bob's result 
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 .Find the code that will be received (or its different versions in case of eavesdropping) .ב

 

Answers: 

 .Yes. It should be noted that in measurements 7,13 the results are different .א

Although it is probable that we would expect different measurements in about 3 

cases, it is still very possible that there will be only two, since this is a small 

number of measurements. 

 :The code is different because there are eavesdroppers. Alice's code is .ב

101001101011. Bob's code is: 101101001011 

 

Quantum coin tossing 

Follow the link below (Or search YouTube: "What is a quantum coin toss?"): 

https://www.youtube.com/watch?v=UjFkIy1GTlk 

The coin toss can be illustrated with the help of the previous cards. Divide into two groups. One 

group chooses one of the colors, and measures regularly according to the same color. The second 

group randomly measures at both bases (the two colors), in each measurement it indicates to 

itself which color it chose, and what the result was. At the end of the process, the second group 

must guess what color the first group chose to test. If she's right in her guess - she's the winning 

team. How do you know what color the first group actually tested? The first group reads to the 

second group the whole series of unity and zeros. The second group is aware that in all 

measurements in one color the results are the same as its results, and the measurements in the 

other color are divided equally (roughly, the larger the number of measurements the more 

accurate it will be) between identical and different results. 

Why can not be cheated? The first group must prove to the second that it was wrong in its guess 

(or admit that it was right). In contrast, the second group only needs to guess. That is, only the 

first group has an option to cheat, it seems that this is not possible. The first group does not know 

what color each measurement was made by the second group, and it conveys the results. She 

cannot aim for good results for her, because she does not know what good results are for her. 

exercise  

In one class, where a significant award was promised to the winning team, the first team cheated. 

The scam was planned as follows: In each of the notes, both sides were measured. The second 

group had a mole that reported to the first group what color each note was measured on. After 

the second group guessed a blue color, the first group passed a series of some unity and zeros. 

Thus proved that the guess of the other team was wrong, and thus won the game. 

Questions: 

1. How did the deceptive group build the series of unity and zeros it transmitted? 

2. Is it possible to cheat in this way even with a real quantum coin toss? 

To prevent such cheating it was decided that the other group would write its guess on a note and 

hand it over to the teacher. The note will be read only after passing the unity and zeros. The first 

group did not say desperate, and planted a mole in the second group, and thus knew in each and 

https://www.youtube.com/watch?v=UjFkIy1GTlk
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every note what color it was measured. The mole was unable to convey to her senders her group's 

guess. 

3. How will the cheating group organize the series of unity and zeros it reads? Will you 

succeed in her deception? 

Answers: 

1. The team read the Red Side results series. 

2. In a true quantum coin toss it is not possible to measure on two different bases, so 

cheating is not possible. 

3. The group will select in each measurement to read the result of the measurement in a 

color that matches the measurement of the other group. By doing so, she will see that 

she knows all the results in each of the colors. However, this will only reveal her disgrace, 

since in this way she will see that she has not measured on a single consistent basis. 

Chapter 5 - Bosons and Fermions 
We've talked before about the spin of the electron. The size of the spin of the electron is (and in 

each axis it can be in the positive or negative direction). In fact, every particle in nature has a spin. 

The size of the spin always comes in whole multiples of, i.e. the possible spin values for particles 

are. The particles can be sorted into two groups: particles with a whole spin value, i.e., in contrast 

there are particles with a half whole spin, i.e.. It turns out that whole-spin particles behave 

substantially differently from half-whole-spin particles. Particles with a whole spin are called 

bosons, after the Indian physicist Satindra Nat Boz, while particles with a whole spin are called 

fermions, after the Italian-American physicist Enrico Fermi. Among the fermions are particles such 

as the electron and the proton. An example of a boson is the photon.
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The main difference between bosons and fermions is in the law called Pauli's Prohibition Principle. 

This principle, formulated by physicist Wolfeng Pauli, states that two fermions cannot be in the 

same state. There must always be at least one physical size in which they have different values. 

This principle applies only to fermions (having a half-full spin) and not to bosons (having a full 

spin). 

The photons are bosons (they have spin 1, meaning the size of their spin is), and therefore Pauli's 

prohibition does not apply to them. This is why we can produce a laser - a flux of photons that are 

identical to each other in all their properties.ℏ 

This is different for electrons, which are, as mentioned, fermions. We will expand on this in the 

next chapter "Introduction to Chemistry". 

Introduction to Chemistry 
This topic includes many additions regarding the meanings of all physical sizes. This means that it 

has many parts that are technical and incomprehensible to students. At the same time it is an 

important subject in the applications of quantum physics. In light of this one should consider 

whether to include this or not, of course within the time frame possible. 
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One of the most important applications to the Pauli Prohibition Principle exists in the way 

populations of electrons in an atom. It is the manner in which the electrons are populated that 

gives each atom its chemical properties. In 1869 the Russian chemist Dmitry Mendeleev proposed 

the periodic table of chemical elements. Only a few decades later did they realize that the order 

in this table is in fact based on principles in quantum physics. 

We have already seen that in related states (a state 

in which a particle has a limited area in which it can 

move) we get quantization - energy levels. So in the 

hydrogen atom and in the same case we called it a 

"particle in a box". In fact, despite the absurdity of it, 

quantization is not a quantum phenomenon, but a 

classical wave phenomenon. In any related wave, 

such as a guitar string, there are discrete values of possible frequencies. In quantum physics every 

particle has wavy properties, so there are cases where discrete values are obtained, similar to any 

wave. When an electron rotates around the atomic nucleus it is in a bound state, so its physical 

magnitude values come at allowable levels. Due to the principle of uncertainty we are notCan talk 

simultaneously about all physical quantities (location, momentum, energy and more). However, 

there are four physical sizes that we can know simultaneously. These sizes are: 

1. The energy of the electron. 

2. The angular momentum of the electron. 

3. Angular momentum component in any direction (we can not determine two different 

components simultaneously). The convention is to talk about a component of angular 

momentum.𝑧 

4. A component of the spin.𝑧 

Each of these sizes has a quantum number that characterizes it. The quantum number is an 

expression that the possible values come in discrete portions. We will now present the rules for 

determining the allowable quantum numbers, and for understanding the possible values for the 

physical quantities we have presented. The way to find the allowed values goes beyond our field 

of study, and is based on solving the Schrödinger equation, which requires high-level 

mathematics. We present here only the result. 

1. energy. We know that the allowable energy levels in the Bohr model are when in the 

hydrogen atom, whereas it is the quantum number so that. Although the Bohr model is 

inaccurate (this is a classic semi-model), its energy levels are correct. Is called the main 

quantum number in this case.−
𝑅∗

𝑛2 𝑅∗ = 13.6𝑒𝑉𝑛𝑛 = 1,2,3, … 𝑛 

2. Angular momentum (hereinafter: TNZ). The normal momentum we know is also called 

linear momentum, and it is an expression of the velocity of a body (but also its mass) in 

the direction - some line (therefore called linear momentum). Similarly there is a physical 

quantity called angular momentum Quantum has certain allowable values of the angular 

momentum of the electron, and they also depend on the energy level at which the 

electron is. The possible angular momentum values are when it is the quantum number 

of the angular momentum. The allowable values depend on the main quantum number. 

And always exists i.e.:. Thus, if we are at the basic level then must exist, and in any case: 
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if we are at the first stimulus level then can be that, but also can be that and then 𝐿 =

√𝑙(𝑙 + 1) ⋅ ℏ𝑙𝑙𝑛𝑙 < 𝑛𝑙 = 0,1,2, … , (𝑛 − 1)𝑛 = 1𝑙 = 0𝐿 = √0 ⋅ 1 ⋅ ℏ = 0𝑛 = 2𝑙 = 0𝑙 =

1𝐿 = √1 ⋅ 2 ⋅ ℏ = √2ℏ. 

3. The angular momentum component in the axis direction (also called: the projection of 

the TNA in a selected axis). Classically, if it is the magnitude of the angular momentum, 

then it can have any value in between. All values are possible, but only discrete values. 

The second amendment relates to the principle of uncertainty. We have seen before that 

it is not possible to determine the spin values in the various axes at the same time. The 

same can be said about the angular momentum. It is not possible to know simultaneously 

the values of the various components of the angular momentum. Therefore, if for 

example, then it follows that, that is, we know the values of the three components 

simultaneously, which is contrary to the principle of uncertainty𝑧𝐿𝐿𝑧 − 𝐿𝐿𝐿𝑧 = 𝐿𝐿𝑥 =

𝐿𝑦 = 017. Therefore, must exist. Component values of the permissible angular 

momentum are, when it is the relevant quantum number, and its permissible values are 

(or). Note that this is always the case (except in the case of) that|𝐿𝑧| < 𝐿𝑧𝐿𝑧 = 𝑚ℏ𝑚𝑚 =

−𝑙, −𝑙 + 1, … , 0,1, … , 𝑙|𝑚| ≤ 𝑙𝐿 = 0|𝐿𝑧| < 𝐿. 

4. A component of the spin (also called: spin spin on a selected axis). We have already seen 

that if we measure the spin of the electron in the direction of any axis (and we refer as a 

convention to an axis) we can get two results. Thus we have here a quantum number that 

can have two values:𝑧𝑧 ±
ℏ

2
𝑚𝑠 ±

1

2
. 

It follows that the electron in the atom has a quantum state characterized by the four quantum 

numbers we have numbered. We can mark the situation as follows:. We would like to expand a 

little here on the atom model according to quantum mechanics - the Schrödinger atom model. 

This model is quantum, meaning it refers to the fact that an electron has a wave function that 

describes the probability of finding it in one place or another. In this model we are not talking 

about self-states of position or momentum, but as stated about states that are self-states of the 

four sizes: energy, Tanz, Tanz throwing, spin throwing. The wave function describes the values of 

each of the four sizes, and on the other hand describes the superposition of the position states. 

Just as the state is a self-state of spin up, and describes the probabilities of being in a right / left 

spin, so the state (or wave function) is a self-state of the said four physical quantities, and 

describes the probability of being in any position and position (it is a continuous function of 

infinite positions, not Connection of two / three possible locations). for example, For the situation, 

the function of the wave is, when it is some coefficient, is the distance from the nucleus, is the 

limited radius of Bohr (some correction to the atomic radius of Bohr). With the help of this 

function (much simpler than in cases where) we can find what the probability is of being in a 

particular location|𝑛, 𝑙, 𝑚, 𝑚𝑠⟩| ↑⟩ =
1

√2
| →⟩ +

1

√2
| ←⟩𝛹𝑛,𝑙,𝑚,𝑚𝑠

(𝑟)𝑛 = 1𝛹(𝑟) = 𝐴 ⋅

𝑒
−

𝑟

𝑎0
∗
𝐴𝑟𝑎0

∗𝑛 > 118. 

 
17 The exception is the case in it L = 0, where Lx = Ly = Lz = 0. We will not explain here why this case 
does not contradict the principle of uncertainty. 
18It is important to emphasize that the calculation of the probability is not trivial, and requires an integral 

calculation of the square wave function in a particular domain. There is no significance to probability in a 
point location but in an area. 
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As stated, the electron in an atom has a quantum state characterized by the four quantum 

numbers we have counted. We can mark the situation as follows:. The electron is free, so it is not 

possible for two electrons to be in the same state. This means that it is not possible to populate a 

large number of electrons at the basic level. We will try to see how many electrons can be 

populated at each level.|𝑛, 𝑙, 𝑚, 𝑚𝑠⟩ 

How many electrons can be populated at the basic level? This is a situation in which, and therefore 

commits, and in any case. The spin can have two values (this is a fact that does not vary from level 

to level). In total no more than two electrons can be populated at the basic level.𝑛 = 1𝑙 = 0𝑚 =

0𝑚𝑠 = ±
1

2
 

We will move on to the next level - the first trigger level,. In this case it may be then, but it may 

be, then. A total of four cases, each of which creates two states because of values, so there are 

eight different states at the first trigger level. We will list them:𝑛 = 2𝑙 = 0𝑚 = 0𝑙 = 1𝑚 =

−1,0,1𝑚𝑠 

|𝑛, 𝑙, 𝑚, 𝑚𝑠⟩ =

= |2,0,0,
1

2
⟩, |2,0,0, −

1

2
⟩, |2,1, −1,

1

2
⟩, |2,1, −1, −

1

2
⟩, |2,1,0,

1

2
⟩, |2,1,0, −

1

2
⟩, |2,1,1,

1

2
⟩, |2,1,1, −

1

2
⟩ 

 

A brief look at the periodic table reveals that indeed in the first row there 

are two elements, and in the second there are eight elements. Later it seems 

that this is directly due to the number of situations. 

In fact, the energy level is accurate in the hydrogen atom only. The hydrogen 

atom has a single electron, so the Schrödinger equation can be solved for it 

in a relatively simple way. As more electron additions occur, the equation 

becomes more complex, and the solution of the hydrogen atom becomes 

less accurate. Moreover, due to various effects the energy becomes 

dependent on other quantities besides the value of𝑛𝑛.  

Every body always strives to be in a state of lower energy. It is an energetic 

observation of the aspiration of each body to fall to the ground, and of any mass attached to the 

spring to be drawn towards the state of equilibrium. Therefore, any electron we add to the atom 

will strive to be at the lowest energy level (if it is at a high level, it will drop a level and emit a 

photon). However, due to Pauli's Prohibition Act, he can only be in a situation that is not 

"occupied" already. This can be seen as an analogy for filling a glass with water. The water prefers 

to be at the bottom of the glass, but if the bottom of the glass is already "occupied", the water 

will start to fill the glass more and more at the top. We will now formulate the rules of preference 

of the electrons for populating the various states. These rules are called the Madlong Rules, after 

the German physicist Erwin Madlong who formulated the rules in 1936. 

The first rule states that given two modes, the lower energy level is in a state where the value of 

the amount is lower.𝑀 = 𝑛 + 𝑙 
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The second rule states that for two modes having the same, the energy level will be low in a state 

where its value is lower.𝑀𝑛 

There are other rules and exceptions, but we will ignore them in this framework. 

We would like to use the usual markings for energy levels. Each level is called an atomic orbital. 

The orbitals are characterized by numbers, where the value of is written as a number, while the 

value of is denoted by letters in the following order:, when pronounced by the letter, the orbital 

is pronounced by, and so on.𝑛, 𝑙𝑛𝑙𝑠, 𝑝, 𝑑, 𝑓, 𝑔, ℎ, 𝑖 … 𝑙 = 0𝑠𝑙 = 1𝑝 

Regarding the orbitals we will note that the values of the quantum numbers define the 

dependence of the wave function of the electron on the angle (while values determine the 

dependence of the function at a distance from the center). The angular function (called a function) 

is often illustrated𝑙, 𝑚𝑛spherical harmonics) using a balloon-like graph, which describes the 

probability (or rather the root of the probability) of being dependent on direction. This of course 

goes beyond the level taught here, but since we often meet with these paintings, we chose to 

mention them. 

How many atoms can be inhabited in one orbital? Orbital is characterized by, how many different 

modes can be constructed in such a mode? As the number of possibilities for numbers. For a 

certain, there are options for values, after all. Each set of has of course two possible values (). 

Therefore in each orbital electrons can be populated.𝑛, 𝑙𝑚, 𝑚𝑠𝑙2𝑙 + 1𝑚𝑚 =

−𝑙, … ,0,1, … , 𝑙𝑛, 𝑙, 𝑚𝑚𝑠 ±
1

2
2 ⋅ (2𝑙 + 1) 

In the hydrogen atom H has a single electron, so it will be inhabited at the lowest level. The helium 

atom has two electrons, and will also be populated at the same level. The notation for this 

population is that it means that there are two electrons in Orbital.1𝑠1𝑠21𝑠 

We will move on to the next atom - the lithium atom Li. This atom has three electrons. The first 

two are inhabited at a level, but there is no "room" for more electrons, so they now move to a 

state in which, that is, to a state in, which is marked. The total population is1𝑠𝑀 = 2𝑛 = 2, 𝑙 =

02𝑠1𝑠22𝑠 

In general, for a state, i.e. for a state where there are 2 electrons that can be populated. For a 

state, i.e. a state in which electrons can be inhabited. For mode 10 can be populated, and for 

mode 14 electrons can be populated.𝑠𝑙 = 0𝑝𝑙 = 12 ⋅ (2𝑙 + 1) = 2 ⋅ 3 = 6𝑑𝑓 

We will now try to see the population of electrons in the iron atom Fe, an atom with 26 electrons. 

First, for, i.e. for, 2 electrons can be populated (the first two - as in the helium atom), and the 

population is 𝑀 = 1𝑛 = 1, 𝑙 = 01𝑠2. 

We'll move on to the situationIn it, that is, in a state in it, also in which 2 electrons can be 

populated and the population is. A total of 4 electrons.𝑀 = 2𝑛 = 2, 𝑙 = 01𝑠22𝑠2 

We'll move on to the situationat him . This state can be a state of, or a state of. As mentioned, the 

previous state of population has the lowest number, ie the state in which 6 electrons can be 
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populated, and the total population is 10 electrons. This population is that of the neon atom.𝑀 =

3𝑛 = 2, 𝑙 = 1𝑛 = 3, 𝑙 = 0𝑛𝑛 = 2, 𝑙 = 11𝑠22𝑠22𝑝6 

The next option is as stated in which two more electrons can be populated - a total of 12 electrons, 

and the marking is. Many times this is written in short, with the marking in the square brackets 

being that of the neon, and generally marking the last noble gas that was. We will not detail their 

meaning here. We will just note that they arrive before the ascent to the next number, and this 

means that the electrons are populated to some degree in their entirety. They appear at the right 

end of each row, before moving on to the next row.𝑛 = 3, 𝑙 = 01𝑠22𝑠22𝑝63𝑠2[𝑁𝑒]3𝑠2𝑛 

Similarly, the state of will consist of the states that will come first, and, so we can add another 8 

electrons in the population written in short (the noble gas organization). In total we populated 20 

electrons.𝑀 = 4𝑛 = 3, 𝑙 = 1𝑛 = 4, 𝑙 = 01𝑠22𝑠22𝑝63𝑠23𝑝64𝑠2[𝐴𝑟]4𝑠2 

We will now move on to the situation, which consists of the situations that will come first, that 

will come second, and that will come third. In this situation, 10 electrons can be populated, but 

we, in the case of iron, need to populate only 6. The population will be or in the abbreviated 

spelling𝑀 = 5𝑛 = 3, 𝑙 = 2𝑛 = 4, 𝑙 = 1𝑛 = 5, 𝑙 = 01𝑠22𝑠22𝑝63𝑠23𝑝64𝑠23𝑑6[𝐴𝑟]4𝑠23𝑑6. 

More details can be found, for example, in https://en.wikipedia.org/wiki/Electron_configuration 

Electrical conductivity 
The exact explanation for the electrical conduction (as opposed to the Drude model which is 

inaccurate) is quantum, and is related to the fact that the electrons are fermions, meaning that 

they cannot all be in the same physical state. In this context we will explain this only in general. 

In a single atom there are discrete states of energy (this fact already exists in the Bohr model, and 

is also true in quantum physics in solving the Schrödinger equation). When talking about a solid 

matter, there are many atoms in it, so there is an overlap between the atoms and the permissible 

energy states. The allowable energy states are very many, so they become more and more dense 

for certain energies. A situation is created where there are ranges of energies in which there are 

many and dense states - almost a sequence, so this is a permissible energy range. Other ranges 

where there are no allowable energy levels will be forbidden ranges. This creates the structure of 

the stripes - a structure of permissible energy levels that looks like a crossing - stripes (sequence) 

of permissible energies, and between them gaps of forbidden energies. 

Electrons are fermions, which means that not everyone can be in the same state - in the same 

energy. That is, if a particular electron "captures" some energy (and each particle strives to 

capture the lowest possible energy), then the next electron will be "forced" to receive a higher 

energy. This is somewhat reminiscent of water that fills a glass, the more water we add, they will 

not be able to be at the lowest altitude because it is occupied, but will reach a higher place - just 

as the water level rises as we add water, so does the energy level of electrons. 

What sets a conductor apart from an insulator is that the number of electrons does not fill the 

allowable energy band, but only its portion. In a strip insulator full of electrons, and therefore 

even if we give them energy, they will not be able to reach the next strip, since there is an energy 

gap between the stripes (unless we give a very, very high voltage). In a conductor, on the other 

https://en.wikipedia.org/wiki/Electron_configuration
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hand, the electrons normally fill only part of the strip, so that any energy we give them can raise 

them to a higher energy in the strip (since the strip has a sequence). Raising energy means giving 

kinetic energy - the movement of electrons, that is, the existence of an electric current. 


